Obliczeniowa mechanika płynów (ang. computational fluid dynamics, CFD) jest nowoczesnym narzędziem stosowanym w praktyce inżynierskiej, które może zostać wykorzystane do optymalizacji procesu projektowania stałych urządzeń gaśniczych gazowych (SUG-gazowych). W pracy przedstawiono wybrane możliwości praktycznego stosowania metod numerycznych do oceny poszczególnych parametrów projektowych SUG-gazowych. Główną cechą modelowania CFD jest możliwość uzyskania rozkładów stężeń gazów, kierunków przepływu strumienia mieszaniny gaśniczej w chronionym pomieszczeniu oraz przestrzennego rozkładu temperatury powietrza, co stanowi istotny walor poznawczy tej metody. Uzyskane wyniki wskazują na potencjał praktycznego wykorzystania metod CFD w modelowaniu zabezpieczeń gazem gaśniczym rzeczywistych pomieszczeń.
EN
Computational fluid dynamics (CFD) is a modern tool used in engineering practice that can be used to optimize the design of fixed gaseous extinguishing systems (FGE-systems). The paper presents selected possibilities of practical application of numerical methods for evaluation of individual FGE-systems design parameters. The main feature of CFD modeling is the ability to obtain gas concentration distributions, flow directions of fire extinguishing mixture in a protected room and spatial distribution of air temperature, which is an important cognitive value of this method. The results show the potential for practical use of CFD methods in the modeling of extinguishing gas protection of real properties.
Kluczowym wskaźnikiem procesu fermentacji metanowej, rzutującym na opłacalność funkcjonowania biogazowni, jest wydajna produkcja metanu w przeliczeniu na 1 m3 objętości czynnej reaktora. Zależy ona w dużej mierze od właściwego doboru parametrów środowiskowych oraz procesowych. W niniejszej pracy zebrano i przeanalizowano wpływ najważniejszych parametrów fermentacji metanowej prowadzonej w trybie ciągłym (CSTR), do których zalicza się temperaturę, pH, zawartość składników pokarmowych i stosunek C/N w podawanym podłożu, występowanie inhibitorów oraz obciążenie objętościowe reaktora fermentacyjnego, czas retencji i mieszanie reaktora fermentacyjnego. Nadal jednak wpływ wielu czynników pozostaje nieznany, stąd istnieje konieczność dalszych, kompleksowych badań.
EN
A key indicator of methane fermentation process which influences the cost-effectiveness of the biogas plant is efficient production of methane per 1 m3 of reactor. It depends on a proper selection of environmental and process parameters. This article present collected and analyzed effect of most important parameters of continuous methane fermentation (CSTR), which include temperature, pH, nutrient content and the C/N ratio in the feed medium, the presence of inhibitors, and the volume load of reactor, retention time and mixing of digestion reactor. Still, the impact of many factors remain unknown, hence there is a need for more comprehensive studies.
The performance of horizontal subsurface flow constructed wetland (HFCW) for rural domestic sewage treatment has been evaluated. The system was built as a tertiary treatment after the biological processes to improve the effluent wastewater quality. The HFCW was operated in three phases under different hydraulic loading rates (HLRs), and with three kinds of aquatic plants i.e., water spinach, Chinese celery and cress. The vegetation growth parameters such as plant height, fresh and dry weights were monitored and analyzed. The influent and effluent concentrations of the chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were measured. The average removal efficiencies at the first phase were 52.9%, 64.7%, 58.2% and 72.8%, and it reduced to 48.6%, 52.2%, 44.04% and 64.4% in the second phase for COD, NH4+-N, TN and TP, respectively. In the third phase, the HFCW system showed the following mean removal efficiencies: 51.2%, 74.2%, 58.5% and 80.9%. The results revealed that the removal efficiencies increased with decrease in the HLR and increased temperatures. The findings confirmed that the horizontal flow constructed wet-land is more convenient for the rural wastewater treatment with efficient nutrient removal.
Cel: W artykule podjęto problem bezpieczeństwa pożarowego pomieszczeń chronionych instalacją stałych urządzeń gaśniczych gazowych. Zwiększenie precyzji i wiarygodności modelowania procesu gaszenia gazem gaśniczym można osiągnąć poprzez zastosowanie metod numerycznej mechaniki płynów CFD przy wykorzystaniu oprogramowania ANSYS FLUENT. Celem badań było opracowanie modelu numerycznego CFD wypływu gazu gaśniczego z przestrzeni chronionej i zbadanie z jego pomocą skuteczności gaśniczej określonych typów gazów. Projekt i metody: W artykule przedstawiono propozycję numerycznego modelu przepływu gazu gaśniczego przez pomieszczenie. Zawarto także opis badań eksperymentalnych i obliczeń analitycznych przeprowadzonych w celu jego walidacji. Wskazano na przykłady praktycznego wykorzystania opracowanego modelu CFD do symulacji, których wyniki mogą wspomagać projektowanie stałych urządzeń gaśniczych gazowych. Wyniki: Analiza porównawcza zebranych wyników symulacji pozwoliła wskazać model Standard k- ε jako model zapewniający największą zbieżność wyników z wynikami badań w skali rzeczywistej. Wartości czasu retencji uzyskane w drodze symulacji były bliższe wynikom rzeczywistym w porównaniu z wartościami otrzymanymi na podstawie obliczeń przeprowadzonych z wykorzystaniem modelu normowego. Wnioski: Modelowanie CFD umożliwia poddanie analizie mechanizmu przepływu gazu przez pomieszczenie z większą dokładnością niż dotychczas stosowane modele. Pozwala to na optymalizację doboru rodzaju oraz ilości gazu gaśniczego z uwagi na czas retencji. Dobór gazu gaśniczego o gęstości mieszaniny zbliżonej do gęstości powietrza daje możliwość uzyskania czasu retencji przekraczającego czas retencji otrzymany w przypadku zastosowania gazów wskazanych w obowiązujących normach. Zastosowanie modelowania CFD umożliwia prowadzenie badań przy wykorzystaniu przestrzeni wirtualnej, eliminując przy tym niebezpieczeństwo związane z prowadzeniem prac pomiarowych stanowiących zagrożenie dla ludzi oraz redukuje koszty finansowe związane z wyładowaniem gazu.
EN
Aim: The problem of fire safety of areas protected by fixed gaseous extinguishing system is discussed. Increasing the accuracy and reliability of the modeling of gas extinguishing process can be achieved by using methods of computational fluid dynamics CFD using ANSYS FLUENT software. The aim of the study was to develop a numerical CFD model of extinguishing gas flow of the protected space and to examine the extinguishing effectiveness of particular type of norm gases and newly proposed extinguishing gas mixtures with a density similar to the density of air, which significantly limited the phenomenon of outflow of gas from the room and allowed to get longer retention times. Project and methods: The paper proposes a numerical model of extinguishing gas flow through the room which was developed using ANSYS Fluent program, the description of experimental researches carried out in real scale and analytical calculations based on the norm model of gas flow through the room carried out to validate the created CFD model. Examples of practical use of CFD model for simulation, results of which can provide information to support the design of fixed gaseous extinguishing systems were presented. Results: On the basis of a comparative analysis of the collected simulation results model Standard k-ε was indicated as a model that provides the greatest convergence of test results in real scale. Retention times obtained by the computer simulation were closer to real scale results than the retention times obtained on the basis of calculation using the norm wide interface model. Conslusions: The use of CFD modeling allows to review the mechanism of gas flow through the room with greater accuracy than previously used models. This allows for optimal selection of the type and amount of extinguishing gas due to the retention time. Selection of extinguishing gas with the mixture density similar to air density, makes it possible to obtain a retention time exceeding the retention time of the gases specified in the applicable standards. The use of CFD modeling allows to conduct research using virtual space, eliminating the danger related to measurement process posing a threat to humans and reduce financial costs associated with the discharge of extinguishing gas.
Bezpieczeństwo pożarowe jest jednym z najważniejszych wymagań stawianych współczesnym budynkom. Technologia gaszenia gazem za pomocą stałych urządzeń gaśniczych (SUG) znajduje szerokie zastosowanie w zabezpieczaniu mienia dużej wartości wrażliwego na działanie innych środków gaśniczych. Aby zapewnić skuteczne ugaszenie pożaru, gaz musi być utrzymywany w kubaturze pomieszczenia przez odpowiedni czas, tzw. czas retencji. W przypadku pomieszczeń nieszczelnych, gdzie nie występuje wymuszone mieszanie gazów, cięższy od powietrza gaz gaśniczy opada i wypływa dolnymi nieszczelnościami pomieszczenia, a górnymi napływa świeże powietrze. W przypadku gazów lżejszych od powietrza przepływ ma kierunek odwrotny. Przyczyną wypływu jest różnica ciśnień hydrostatycznych mieszaniny gazu gaśniczego wewnątrz chronionej przestrzeni i powietrza otoczenia. Mechanizm ten powoduje utratę skuteczności ochrony. Zdarzają się sytuacje, gdy gazy gaśnicze przyjęte w normach, nie zapewniają wystarczającego czasu retencji. Wychodząc naprzeciw takim potrzebom, postanowiono zaproponować gaz gaśniczy o nowym składzie, posiadającym gęstość zbliżoną do gęstości powietrza, nie uwzględniany do tej pory przez znane normy. Przedmiotem badań była analiza porównawcza czasów retencji uzyskanych przy zastosowaniu czystego azotu - gazu gaśniczego normowego, o gęstości najbliższej gęstości powietrza, spośród wszystkich gazów normowych oraz prototypowych gazów gaśniczych o składzie Ar = 7 % v/v i N2 = 93 % v/v oraz Ar = 9 % v/v i N2 = 91 % v/v. Na podstawie badań stwierdzono, że dobór składu gazu gaśniczego umożliwia maksymalizację czasu retencji. Gazy gaśnicze o gęstościach bliskich gęstości powietrza pozwoliły uzyskać dłuższe czasy retencji.
EN
The paper discusses the problem of fire safety rooms protected by fixed gaseous extinguishing systems. Fire safety of areas protected by fixed gaseous extinguishing systems particularly depends on the retention time of the extinguishing gas, i.e., the time, in which effective extinguishing gas concentration shall be maintained in the protected space. Practical experience shows that getting the required retention time is often difficult to achieve using extinguishing gas recognized in the current standards. In such situations, there is a need for an alternative solution. An extinguishing gas of the new compositioncould besuch a solution. In the research part, the retention times of nitrogen and nitrogen-argon mixtures were measured in laboratory conditions, including mixtures of proportions selected such as to achieve a density close to the density of the ambient air. Based on the research, it was found that the selection of the composition of the extinguishing gas maximizes the retention time. Extinguishing gases with densities close to air density provide the retention times longer than extinguishing gases currently use in fire protection.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
SUG-gazowe stosowane są powszechnie do zabezpieczenia pomieszczeń, w których znajduje się mienie wrażliwe na działanie innych środków gaśniczych (serwerownie, archiwa). O skuteczności gaszenia decyduje czas retencji gazu gaśniczego w pomieszczeniu. Wyznaczanie tego czasu dobywa się najczęściej analitycznie, wg wybranych modeli wypływu gazu z pomieszczenia. Weryfikacja obecnie stosowanychmodeli wskazuje rozbieżności między wartościami mierzonymi a wyznaczanymi. Proponowane są nowe modele, umożliwiające wyznaczenie czasu retencji z większą niż dotychczas dokładnością. Założenia do stosowanychmodeli nie sprawdzają się w przypadku gazów o gęstości bliskiej gęstości powietrza.
EN
FES-gaseous are commonly used to protect the rooms, in which high value assets are located (server rooms, archives). The effectiveness of extinguishing the fire is determined by the retention time of the gas in protected room. Determination of retention time is generally accomplished analytically based on the selectedmodel gas flow out of the room. Verification of currently usedmodels indicate discrepancies between measured values and calculated values. The proposed newmodels, enabling determine the retention time, with greater accuracy than ever before. Assumptions for known models are not suited for gases with density close to density of air.
Skuteczność gaszenia gazami gaśniczymi za pomocą stałych urządzeń gaśniczych (SUG) zależy od czasu utrzymywania stężenia, tzw. czasu retencji. Odpowiednio długi czas retencji umożliwia wychłodzenie źródła pożaru oraz interwencję ekip ratowniczych. Na długość czasu retencji ma wpływ przede wszystkim szczelność pomieszczenia oraz różnica gęstości mieszaniny gaśniczej i otaczającego powietrza. Gęstość gazów uzależniona jest od warunków klimatycznych, w szczególności: ciśnienia, temperatury i zawartości pary wodnej. Na podstawie analizy przeprowadzonej w oparciu o wybrany model stosowany do wyznaczania czasu retencji, wykazano że pomijanie wpływu tych wielkości może wiązać się z istotnym błędem przy wyznaczaniu czasu retencji gazów o gęstościach bliskich gęstości powietrza.
EN
The effectiveness of fixed gaseous extinguishing system depends on retention time – period time after discharge in which concentration of agent is high enough. It is important that an effective extinguishant concentration not only be achieved, but is maintained for a sufficient period of time to allow effective emergency action. This equally important in all classes of fires since a persistent ignition source (e.g. an arc, heat source or deep-seated fire) can lead to resurgence of the initial event once the extinguishant has dissipated. The longer the gas remains after the discharge, the better the level of protection offered. It is essential to determine the likely period during which the extinguishing concentration will maintained within the protected enclosure. The retention time can be determined in two ways: 1) full discharge test and measurement of gas concentrations at the required height; 2) door fan test and calculations based on the model gas flow out. The first method is expensive and rarely applied. Using the second method requires choose an appropriate model. Each of the known models assume ideal mixing of gas during its discharge from the cylinder. The air-agent mixture is created. This mixture then flows out the lower leakages, and air influences the upper. Difference in density of the ambient air ρ0 and the mixture inside enclosure ρm drives the flow of gases. Currently the following models are used to determine the retention time: a) model with a sharp interface between the agent-air mixture and the inflowing air (fig. 1) – Assuming that gas species do not diffuse results in an infinitesimally thin interface between inflowing fresh air and the agent–air mix resulting after dis-charge – model used in the standard NFPA 2001:2012 [1]; b) with a wide interface between the agent-air mixture and the inflowing air (fig. 2) – the wide interface model assumes that inflowing fresh air mixes instantaneously with the agent–air mixture to form a linear decay of agent concentration from the leading edge o the interface, to the uppermost elevation in the protected enclosure. model used in the standard PN EN 15004-1:2008 [2]; c) model with continuous mixing (fig. 3) – The inflowing air dilutes the mixture evenly - model used in PN EN 15004-1:2008 and NFPA 2001:2012, provided that the occurrence of forced mixing of the gases in the protected enclosure, such as air conditioners. For the analysis carried out in the article is selected model with a wide interface used in European standard. Retention time in this model is determined by the equations (3,4). Retention time in PN-EN 15004 [2] is measured from the moment of achievement the throughout the enclosure design concentration to the moment when the extinguishant concentration at 10% or 50% or 90 % of the enclosure height is less then 85% of the design concentration. The retention time shall be not less than 10 min. The density of gases depends on temperature and pressure of according to the equation (6). Air contains another factor – humidity, according to the equation (5). The density of the mixture of air-agent is determined by the formula (7). The difference between the density of the air surrounding the protected enclosure ρ0 and density of air-agent mixture inside the room affects the length of the retention time ρm according to equation (3). Two cases were analyzed: c) protected room located inside the building and its walls bordering spaces with similar parameters of air, d) walls of protected room are walls of building; air parameters inside and outside significantly different. For these cases, the following extreme conditions: c) climatic conditions inside and outside the same temperature: 18-26 oC, actual pressure 868-1050 hPa, humidity 40-60 %. d) climatic conditions inside: temperature: 18-26 oC, actual pressure 868-1050 hPa, humidity 40-60 %; climatic condi-tions inside: temperature -35 do 35 oC, actual pressure 868-1050 hPa, humidity 0 – 100 % The results of calculations for the climatic conditions in which the density difference reaches the highest values are pre-sented in Tables 3 i 4. In order to determine the effect of climatic conditions on the length of the retention time of the calculations were performed according to the model with a wide interface. Assumed a room with a capacity of 70 m3, height 2,8 m. Assumed leakage area 377 cm2 (n = 0,2191; k1 = 0,0374). Retention times were calculated for each agent assuming normative conditions and the most adverse climatic conditions. The results are shown in Table 5. Extinguishing gases with a density similar to air density reached the longest retention times in the group of analyzed gases (fig. 4). Retention time, gas consisting of 92% N2 and 8% Ar was ca. 5 times longer than halocarbon and over 2-times then Nitrogen. Under adverse climatic conditions that may occur inside the building and are identical in a protected space, and outdoor the room, retention time is changing (fig. 5). Retention time of Novec 1230, FM200 and Argonit was slightly shortened 1-2% (fig. 6). In case of Nitrogen was slightly longer - about 1%. The most significant changes (shortening by about 45%) concerned a mixture of 92%N2-8%Ar, which has density similar to the density of air in normative conditions. Under adverse climatic conditions that may exist between the protected space and the outside of the building, the density difference ρm - ρ0 reaches higher values. Despite this, the retention times of gases with high densities (FM200, Novec 1230) were slightly reduced, about 3% (fig. 8). The extinguishing gas density was more similar to the density of air, the more significant was the reduction in retention time, reaching almost 80% in the case of a mixture 92%N2-8%Ar (fig. 8).
W pracy przedstawiono wyniki badań procesu degradacji organicznej frakcji stałych odpadów z gospodarstw domowych metodą fermentacji metanowej. Określono zmiany poziomu wskaźników obciążenia organicznego oraz szybkości wytwarzanego w procesie biogazu i zawartości w nim metanu dla różnych hydraulicznych czasów retencji.
EN
In this paper the results concerning the degradation processes of organic fraction of municipal solid waste during methane fermentation are presented. The changes of basic organic load indicators, biogas production rate and methane content in biogas for various hydraulic retention times were determined.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The quantitative structure-retention relationships theory is applied to compute retention times of some o-acetylphenyl esters. Molecular topological descriptors are used to calculate the fitting equations. Experimental data is satisfactorily described by the theoretical equations. Some further possible extensions of the present approach are analyzed for future developments.
PL
Teorię ilościowych zależności struktura- retencja zastosowano do obliczenia czasów retencji pewnych estrów o-acetylofenylowych. Do obliczenia równań dopasowania zastosowano topologiczne deskryptory cząsteczkowe. Równania teoretyczne satysfakcjonujące opisują dane doświadczalne. Przeanalizowano możliwości rozwinięcia obecnych badań w przyszłości.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.