Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  czas pobytu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Bank filtration (BF) is a nature-based solution that can provide safe drinking water at a low cost, in being a green technology that benefits from natural ecosystem services and saves energy as well. The objective of the present paper is to evaluate the potentiality of a new site for bank filtration along a surface water source that experiences periods of both high and low flow. This site is located along the Ismailia Canal in the eastern Nile Delta fringe of Egypt. The present evaluation is based on exploratory drilling, installation of monitoring infrastructure and monitoring of both water level and water quality parameters for one year. The site has favourable hydrogeological conditions; the mean hydraulic conductivity of aquifer materials (sand and gravel) is 18.98 m/day. Moreover, there is a hydraulic connection between canal and aquifer; under steady conditions, the canal feeds the aquifer. Using different tracers, such as Cl, EC, Sr and SO4, the average bank filtration share is in excess of 95%. BF has reduced the particulates (turbidity) by 96%, total coliform by 99 % and total organic carbon (TOC) expressed as ultra-violet absorbance at 254 wavelengths (UVA254) by 44%. In addition, BF reduces concentrations of disinfection by-products due to its ability to remove organic matter. The potential degradation of TOC in the canal bed sediments may cause the release of iron (Fe) and manganese (Mn) to the bank filtrate water; this process is exaggerated during low-flow periods. Compared to conventional water treatment, BF is a cost-effective green technology, because no chemicals are used and no waste products are generated.
EN
This paper investigates an N-policy GI/M/1 queue in a multi-phase service environment with disasters, where the system tends to suffer from disastrous failures while it is in operative service environments, making all present customers leave the system simultaneously and the server stop working completely. As soon as the number of customers in the queue reaches a threshold value, the server resumes its service and moves to the appropriate operative service environment immediately with some probability. We derive the stationary queue length distribution, which is then used for the computation of the Laplace– Stieltjes transform of the sojourn time of an arbitrary customer and the server’s working time in a cycle. In addition, some numerical examples are provided to illustrate the impact of several model parameters on the performance measures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.