Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cząstki węglika krzemu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Zastosowanie metod metalurgii proszków w połączeniu z procesami przeróbki plastycznej umożliwia wytworzenie nowych materiałów konstrukcyjnych. Materiały gradientowe i kompozytowe na osnowie aluminium stanowią unikalny typ tworzyw konstrukcyjnych. Materiały gradientowe stanowią grupę kompozytów wytworzonych z dwóch lub więcej składników, które mają zmienny skład chemiczny w określonym kierunku. Uzyskuje się w ten sposób zmianę własności mechanicznych lub fizycznych w tym kierunku oraz określone własności eksploatacyjne i użytkowe wyrobu. Daje to duże możliwości rozwiązań przy projektowaniu i wytwarzania strukturalnych wyrobów. Specjalną grupę materiałów konstrukcyjnych stanowią kompozyty na osnowie metalowej umocnione cząstkami celem poprawy sztywności, wytrzymałości i własności użytkowych, do których należy odporność na zużycie. Do kompozytów na osnowie proszku aluminium umocnionych cząstkami stosuje się wyciskanie lub prasowanie na gorąco. Przedstawiono wyniki badań wpływu przeróbki plastycznej warstwowych materiałów gradientowych na osnowie proszku aluminium, a także wyprasek z proszku aluminium i kompozytów na jego umocnionych cząstkami (Al-SiC). Proces wytwarzania obejmował mieszanie proszków, prasowanie w temperaturze otoczenia i kucie matrycowe lub wyciskanie na gorąco wyprasek w warunkach izotermicznych. Zbadano wpływ parametrów formowania na gorąco na własności mechaniczne tak wytworzonych materiałów jak również wpływ wyciskania i ciągnienia na granicę plastyczności kompozytu Al-10% SiC i materiału osnowy. W wyniku ciągnienia zwiększyła się granica plastyczności kompozytu ze 115 MPa na 138 MPa, a naprężenie płynięcia zwiększyło się ze 150 MPa na 185 MPa przy odkształceniu wynoszącym 0,75.
EN
PM processing routes for construction materials include those for gradient and composite materials based on aluminium. Gradient materials are a type of composite, formed from two or more distinct constituents, which exhibit a graded composition. Thus one material appears to transform to another, producing gradual changes in characteristics and resultant new exploitable functional properties. Accordingly these materials extend the range of structural components. PM metal matrix particulate composites are developed to improve stiffness, strength and specific properties such as wear resistance. Hot pressing (consolidation) and hot extrusion are suitable for PM Al matrix particulate composites. In the presentation the results of investigation on processing of PM aluminium alloy based gradient materials, and aluminium and Al-SiCparticle composite processed by hot forming and drawing, are discussed. Forming of materials from aluminium powder and mixtures of this powder and silicon carbide particles or Al- alloy powder and processing of two-layer products based on these materials are considered. Forming involved mixing of basic powders, pressing at room temperature and hot closed-die forging of the compacts in isothermal conditions. The influence of hot forming parameters on the mechanical properties of Al and the composite materials was evaluated. Extrusion and drawing of Al-10%SiC increased the yield stress from 115 to 138 MPa and the flow stress at 0.75 strain from 150 to 185 MPa.
PL
W warunkach izotermicznych realizowano kucie w matrycach zamkniętych wyprasek wykonanych z warstw proszku aluminium i mieszanek tego proszku z węglikiem krzemu w ilości 10 % mas. Określono wpływ kucia wyprasek na twardość, wytrzymałość na ściskanie oraz na zginanie próbek pobranych z otrzymanych odkuwek. Przedstawiono również przykład kucia matrycowego wyrobów warstwowych oraz budowę kompozytu hybrydowego z otrzymanego kompozytu w wyniku kuciu. Materiały do wyciskania i ciągnienia wykonano z wyprasek z proszku aluminium RAl-1 oraz mieszanki tego proszku z proszkiem węglika krzemu SiC w ilości 10 % mas. Wyciskanie realizowano w warunkach izotermicznych przy temperaturze 480 °C ze współczynnikiem 4,2. Wyciskane próbki przeciągano na średnicę 16 mm. Względna zmiana przekroju w wyniku ciągnienia wyniosła 0,9. Z wyciskanych i ciągnionych wyrobów pobrano próbki wzdłużne do ściskania. Ciągnienia spowodowało umocnienie materiału. Granica plastyczności osnowy aluminiowej zwiększyła się o ok. 10 MPa, a naprężenie uplastyczniające przy odkształceniu 0,75zwiększyła się ze 160 do 180 MPa. Efektem umocnienia materiału kompozytowego Al-10-%SiC jest zmiana granicy plastyczności, która zwiększyła się ze 115 MPa do 138 MPa, a naprężenie uplastyczniające przy odkształceniu 0,75 podczas ściskania zwiększyło się ze 150 MPa do 185 MPa, Widoczny jest wpływ umocnienia osnowy aluminiowej w wyniku odkształcenia, a w kompozycie dodatkowo wpływ mikrometrycznych cząstek węglika krzemu na umocnienie tworzywa.
EN
Forming of materials from aluminium powder and mixtures of this powder and silicon carbide particles is reported. Twolayer performs based on these materials were hot closed-die forged in isothermal conditions. The influence of the content of the component layers on changes in the forging force was qualitatively investigated. Room temperature bend strengths of the two-layer products, depending on the stacking sequence, were evaluated. The plastic flow process of individual layers was analysed. The preforms from RAl-1 aluminium powder and its mixture with 10 % SiC particles were extruded at the temperature of 480 °C, with extrusion ratio 4.2. After cold drawing with the ratio 0.9, the yield stress of aluminum matrix increased from 70 to 80 MPa. Reinforced aluminium with SiC particles has a higher yield stress than matrix material after extrusion. After drawing, the yield stress increased from 115 to 138 MPa. The critical strains during the compression test for aluminum matrix and composite are higher than 0.75.
3
Content available remote Yield stress of PM Al-10 wt.% SiC composite after extrusion and drawing
EN
The yield and flow stress data for an Al-10% SiC composite and for its aluminium PM matrix after extrusion and drawing are reported. Preforms were manufactured by the cold pressing of RAl-1 aluminium powder and of its mixture with 10% SiC particles. They were extruded at 480ºC, with extrusion ratio λ= 4.2. No porosity was observed on longitudinal sections of the Al-SiC composite. The hardness and compressive mechanical properties of the materials were evaluated. The yield and compression strengths of the composite were higher than for the PM aluminium. After cold drawing with strain φr= 0.09, the yield stress of the extruded aluminium increases from the range of 74 to 80 MPa to the range of 115 to 118 MPa and at a 0.75 strain flow, the stress increases to 160 MPa. The average yield stress of the extruded composite is 93 MPa and drawing increased it to 135 MPa; at a 0.75 strain flow stress, it increased from 150 to 180 MPa. For both the aluminium and the composite, the critical compressive strains are higher than 0.75.
PL
Przedstawiono wyniki badań wpływu odkształcenia kompozytu Al.-10% mas. SiC w procesie ciągnienia na granicę plastyczności i naprężenie płynięcia oraz twardość. Porównawczo przeprowadzono również badania także dla aluminiowej osnowy. Materiał do badań otrzymano przez wyciskanie wyprasek z proszku aluminium RAl-1 oraz mieszanki tego proszku z proszkiem węglika krzemu SiC w ilości 10% mas. Wyciskanie realizowano w warunkach izotermicznych przy temperaturze 480ºC i ze współczynnikiem wyciskania λ= 4,2. Wyciskane próbki toczono ze średnicy 18 mm do średnicy 17,5 mm, a następnie przeciągano na średnicę 16 mm. Logarytmiczne odkształcenie obliczone ze zmiany średnicy wyrobu w wyniku ciągnienia wynosi φr=0,09. Z wyciskanych i ciągnionych wyrobów pobrano próbki wzdłużne. Próbki ściskano z prędkością 0,15 mm/s. W wyniku ciągnienia nastąpiło umocnienie materiału zarówno próbek z aluminium, jak i z materiału kompozytowego Al.-10%SiC. Granica plastyczności osnowy aluminiowej wzrosła o około 30 MPa, a naprężenie uplastyczniające z 160 do 180 MPa przy odkształceniu wynoszącym 0,75. Dla materiału kompozytowego efekt umocnienia jest większy: granica plastyczności wzrosła z 110 do 138 MPa, a naprężenie uplastyczniające, przy odkształceniu podczas ściskania wynoszącym 0,75, podwyższyło się z 150 do 180 MPa. Widoczne jest umocnienie osnowy aluminiowej w wyniku odkształcenia, a w kompozycie również wpływ obecności mikrometrycznych cząstek węglika krzemu na jej umocnienie. Własności wytrzymałościowe określone dla próbek pobranych na długości wyciskanych i ciągnionych wyrobów są porównywalne z wyjątkiem materiału w początkowej części wyrobów.
EN
The objective of the research work was to evaluate the possibility of forming high quality composites based on the Al17Si5Fe3Cu1.1Mg0.6Zr alloy, reinforced with silicon carbide particles, by means of preliminary hot compaction and hot extrusion processes. The mixtures were prepared with a matrix alloy powder and reinforcing phase, with a volume fraction of SiC particles maintained at 5, 10 and 15%. The feedstock to be extruded was prepared by preliminary hot compaction of the powders and composite mixtures. Subsequently, the semi-finished products were subjected to forward extrusion in isothermal conditions. For the obtained materials, both after compaction and after extrusion, their relative densities and hardness were determined. For the extruded materials, their compressive strength was determined, stress-strain curves were constructed, and their microstructure was analysed as well. The obtained materials showed high relative density and mechanical properties depending on the amount of deformation and volume fraction of the reinforcing phase. As a result of introducing SiC particles into the matrix or increasing their volume fraction, an increase of hardness was observed. Hot extrusion resulted in decreased hardness as compared to the material after preliminary compaction. With a volume fraction of SiC maintained not higher than 10%, the compressive strength of the extruded materials increased, while at 15% the average compressive strength was lower when compared to the matrix alloy. Based on room temperature stress-strain curves it was found that introducing particles into the matrix or increasing their volume fraction caused a decrease of the strain level at which failure of the specimen occurred. Increasing the volume fraction of SiC particles up to 10% resulted in a strengthening of the matrix, while in the case of a composite containing 15% of particles, a lowering of strength was observed. Specimens subjected to compression at a temperature of 200°C were deformed plastically, and the stress value at which the deformation occurred increased with an increasing volume fraction of the reinforcing phase. The microstructure of the matrix obtained as a result of extrusion realized with the assumed parameters was fine-grained. In the case of composites, the observations revealed a uniform distribution of SiC particles in the matrix. Based on the obtained results of the investigations, it was concluded that in the case of products formed with the assumed parameters, the introduction of SiC particles into the matrix, with a volume fraction maintained not higher than 10%, has a favourable effect, while at 15% a decrease of the analysed material properties at room temperature and their increase at an elevated temperature is observed. The obtained results of investigations allow us to conclude that the decision to introduce SiC particles into the Al17Si5Fe3Cu1.1Mg0.6Zr alloy matrix as a reinforcing phase, as well as of their volume fraction, should depend on the foreseen working conditions of the element made of this material.
PL
Celem badań była ocena możliwości formowania wysokiej jakości tworzyw na osnowie stopu Al17Si5Fe3Cu1,1Mg0,6Zr umocnionych cząstkami węglika krzemu, przy wykorzystaniu procesów wstępnego zagęszczania na gorąco i wyciskania na gorąco. Przygotowano mieszaniny proszków stopu osnowy i fazy umacniającej, przy udziałach objętościowych wynoszących odpowiednio 5, 10 i 15% cząstek węglika krzemu. Proces mieszania składników prowadzono w temperaturze pokojowej, przy prędkości obrotowej mieszalnika 0,9 s-1 i w czasie 60 minut. Wsad do wyciskania przygotowano przez wstępne zagęszczenie na gorąco proszków i mieszanin kompozytowych. Proces realizowano przy temperaturze 485°C oraz nacisku 150 MPa, który przetrzymywano przez 5 minut. Tak przygotowane półwyroby były wyciskane współbieżnie z prędkością 0.15 mm s-1 i przy współczynniku wyciskania 4,1. Podczas wyciskania stopu osnowy i kompozytów rejestrowano przebieg zmiany siły w funkcji przemieszczenia stempla. Dla półwyrobów po zagęszczaniu i dla wyciskanych tworzyw wyznaczono ich gęstość względną i twardość. Dla materiałów w stanie po wyciskaniu określono wytrzymałość na ściskanie i opracowano krzywe naprężenie - odkształcenie. Równomierność rozłożenia węglika krzemu w osnowie kompozytów oceniano przez obserwacje ich mikrostruktury. W efekcie zastosowania proponowanej technologii formowania otrzymano tworzywa o wysokiej gęstości względnej oraz o właściwościach mechanicznych zależnych od stopnia przetworzenia materiału i udziału cząstek fazy umacniającej w osnowie. Wzrost twardości próbek obserwowano w wyniku wprowadzenia do osnowy cząstek węglika krzemu lub zwiększenia ich udziału objętościowego, proces wyciskania na gorąco przy przyjętych parametrach powodował spadek twardości wsadu. W wyniku wprowadzenia do osnowy 5 i 10% cząstek węglika krzemu stwierdzono zwiększenie wytrzymałości na ściskanie tworzyw wyciskanych, wyznaczona dla kompozytu o zawartości 15% średnia wartość RC była niższa niż dla materiału osnowy. Na podstawie wyznaczonych w temperaturze pokojowej krzywych naprężenie rzeczywiste - odkształcenie stwierdzono, iż wprowadzenie do osnowy cząstek lub zwiększanie ich udziału objętościowego w osnowie powodowało spadek wielkości odkształcenia, przy którym następowało zniszczenie próbek. Podwyższenie zawartości cząstek węglika krzemu w osnowie do 10% prowadziło do umocnienia osnowy, dla kompozytu o zawartości 15% cząstek obserwowano spadek wytrzymałości. Próbki ściskane przy temperaturze 200°C odkształcały się plastycznie, wartość naprężenia, przy którym następowało odkształcenie materiału, rosła wskutek wprowadzenia do osnowy cząstek fazy umacniającej i zwiększania jej udziału w osnowie. Otrzymana w wyniku wyciskania przy przyjętych parametrach mikrostruktura osnowy była drobnoziarnista, w przypadku kompozytów obserwacje wykazały równomiernie rozlokowanie cząstek węglika krzemu w osnowie. Na podstawie otrzymanych wyników badań stwierdzono, że w przypadku wyrobów formowanych przy przyjętych parametrach wprowadzenie do osnowy cząstek węglika krzemu do ich udziału objętościowego wynoszącego 10% jest korzystne, zastosowanie 15% fazy umacniającej powoduje spadek badanych właściwości materiału w temperaturze pokojowej oraz ich polepszenie w podwyższonej temperaturze. Dlatego decyzja o zastosowaniu cząstek węglika krzemu do umocnienia wykonanej ze stopu Al17Si5Fe3Cu1.1Mg0.6Zr osnowy oraz o ich udziale objętościowym w osnowie powinna zależeć od przewidywanych warunków pracy wykonanego z tego materiału elementu.
EN
The results of investigations are presented, which are aimed at determining the effect of the size of SiC particles on selected properties of aluminium-based composites. As initial materials, atomized aluminium powder and silicon carbide powders of different particle size were applied. The scope of the research included the preparation of a matrix and composite material samples, as well as the determination of their selected properties. Powder metallurgy and plastic working technologies were applied to obtain the composite materials. The volume fraction of the reinforcing phase particles in the matrix was set constant at the level of 10%. All the samples were formed using the same parameters. The manufacturing process included the mixing of the components, cold compaction of the aluminium powder and mixtures as well as hot forward extrusion of the P/M compacts. Based on extrusion force measurements, it was shown that introducing smaller silicon carbide particles into the matrix resulted in the necessity to apply a higher load. For extruded materials, their relative density, hardness and abrasion resistance were determined. The results obtained from compression tests performed at room temperature and at 200°C allowed us to construct flow curves for the investigated materials. Microstructure examination was also performed. It was shown that application of the proposed forming technology results in obtaining products showing a relative density close to that of a solid material. The introduction of silicon carbide particles into the matrix caused an increase of true stresses at which deformation proceeded, regardless of the test temperature. In the case of compression of the samples performed at 200°C, the increase of stresses was observed as a result of a reduction of the reinforcing phase particles size in the matrix. In case of compression tests performed at room temperature, no unequivocal influence of particle size on the character of the obtained curves was observed. The realized microstructure examination revealed uniform distribution of SiC particles in the aluminium matrix. The particles were closely adherent to the matrix, and the metallographic specimens did not reveal any voids caused by particles falling out during specimen preparation. The comparative abrasion test showed that the introduction of 10% SiC particles into the matrix and increasing their size, with their volume fraction held constant, leads to lower abrasive wear of the investigated materials. Based on the obtained results, it was concluded that in the case of the given components and their forming technology, the introduction of particles into the matrix has a favourable effect, while their size influences individual properties differently. Therefore, the final selection of the proper size of silicon carbide particles applied as reinforcement in the aluminium matrix, should be based on the knowledge of the characteristic and working conditions of the composite product, as well as the expectations to be met.
PL
W pracy przedstawiono wyniki badań, których celem było określenie wpływu wielkości cząstek węglika krzemu na wybrane właściwości kompozytów na osnowie aluminium. W roli materiałów wyjściowych zastosowano rozpylany proszek aluminium oraz proszki węglika krzemu o różnej wielkości cząstek, odpowiednio SiC220, SiC400, SiC800. Zakres pracy objął wykonanie próbek tworzyw kompozytowych oraz określenie ich wybranych właściwości. Do formowania kompozytów wykorzystano technologie metalurgii proszków i przeróbki plastycznej. Przyjęto stały udział cząstek fazy umacniającej w osnowie, który wynosił 10% objętościowych, wszystkie próbki wykonano, stosując te same parametry ich formowania. Proces wytwarzania kompozytów objął mieszanie składników, prasowanie na zimno proszku aluminium i mieszanin oraz wyciskanie współbieżne na gorąco wyprasek. Na podstawie pomiarów siły koniecznej do wyciskania wykazano, że wprowadzenie do osnowy mniejszych cząstek węglika krzemu skutkowało koniecznością zastosowania większych sił. Dla wyciskanych tworzyw wyznaczono ich gęstość względną, twardość oraz odporność na zużycie ścierne. Na podstawie wyników z prób ściskania w temperaturze pokojowej oraz przy temperaturze 200°C opracowano krzywe umocnienia tworzyw, przeprowadzono również obserwacje ich mikrostruktury. Wyniki badań pozwalają na stwierdzenie, iż zastosowanie proponowanej technologii formowania kompozytów prowadzi do uzyskania wyrobów o gęstościach względnych zbliżonych do litego materiału. Wprowadzenie do osnowy cząstek węglika krzemu powodowało zwiększenie naprężeń rzeczywistych, przy którym przebiegało odkształcenie, niezależnie od temperatury badań. W wyniku ściskania próbek w temperaturze 200°C przyrost wartości naprężeń obserwowano w wyniku zmniejszenia wielkości cząstek fazy umacniającej w osnowie kompozytu, w przypadku prób prowadzonych w temperaturze pokojowej nie stwierdzono jednoznacznego wpływu wielkości cząstek na przebieg otrzymanych krzywych. Przeprowadzone obserwacje mikrostruktury ujawniły równomierne rozmieszczenie cząstek węglika krzemu w aluminiowej osnowie. Cząstki ściśle przylegały do osnowy, na zgładach nie zaobserwowano pustek powstałych w wyniku ich wypadania podczas przygotowywania zgładów metalograficznych. Porównawczy test odporności na zużycie ścierne wykazał, iż wprowadzenie do osnowy 10% cząstek węglika krzemu oraz zwiększenie ich wielkości przy niezmiennym udziale objętościowym prowadzi do obniżenia zużycia ściernego badanych tworzyw. W świetle przeprowadzonych badań można stwierdzić, że dla przyjętych do badań komponentów i zastosowanej technologii ich formowania wprowadzenie cząstek do osnowy powoduje korzystne rezultaty, natomiast ich wielkość ma różny wpływ na poszczególne właściwości. Dlatego ostateczny dobór korzystnej wielkości stosowanych do umocnienia aluminiowej osnowy cząstek węglika krzemu powinien być oparty na znajomości charakterystyki i warunków pracy wyrobu kompozytowego oraz stawianych przed nim oczekiwań.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.