Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cylindrical pressure vessel
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, an elastic analysis of a thick-walled functionally graded cylinder subjected to internal pressure is examined. Material properties for the isotropic material are estimated to obey the Mori-Tanaka homogenization scheme through the thickness. The resulting two-point irregular boundary value problem is solved by the pseudospectral Chebyshev method that converts the boundary value problem to the system of equations, which can be solved by any appropriate decomposition method. Benchmark solutions are used to validate the method. The effect of the arbitrarily chosen volume fraction index is demonstrated for stress and displacement distributions. The effective stresses for different inner radius and volume fraction index are also discussed.
EN
Assuming exponential-varying properties in the radial direction and based on the elasticity theory, an exact closed-form analytical solution is obtained to elastic analysis of FGM thick-walled cylindrical pressure vessels in the plane strain condition. Following this, radial distribution of radial displacement, radial stress, and circumferential stress are plotted for different values of material inhomogeneity constant. The displacements and stresses distributions are compared with the solutions of the finite element method (FEM).
3
Content available remote Design of laminated cylinder using genetic algorithm
EN
An approach for the optimal design of thick laminated cylindrical pressure vessels is given. The maximum burst pressure is computed using an exact elasticity solution and subject to the Tsai-Wu failure criterion. The design method is based on an accurate 3-D stress analysis. Exact elasticity solutions are obtained using the stress function approach where the radial, circumferential and shear stresses are determined taking the closed ends of the cylindrical shell into account. Design of multilayered composite pressure vessels is based on the use of an improved genetic algorithm. This approach is highly efficient for many classes of engineering problems. The proposed selection of the best individuals and localized search makes the search more effective and rapidly improves the fitness value from generation to generation. Both continuous and discrete design variables are considered, and a comparative analysis of the performance of the algorithm is studied. Numerical results are given for optimum fiber orientation for both single-layered cylinder and for each layer in the case of thick and thin-walled multilayered pressure vessels.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.