Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cyclopentanone
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Oxidation of cyclic ketones to dicarboxylic acids
EN
This paper reports the results of studies concerning an alternative method of obtaining dicarboxylic acids, which consist of the oxidation of cyclic ketones with oxygen or air. The raw materials used were cyclopentanone, cycloheptanone, cyclooctanone, cyclododecanone, 1-tetralon, 2-methylhexanone, 3-methylcyclohexanone and 4-methylcyclohexanone. Oxidation reactions were conducted at 70-100°C, under pressure of 0.1 or 0.4 MPa, for 6 h, utilizing the salts of transition metals as catalyst and acetic acid as solvent. For example, when cyclopentanone was oxidized in the presence of Mn(II) salt, a conversion above 98% and selectivity to glutaric acid up to 68% were obtained. Among synthesized dicarboxylic acids, 1,12-dodecanoic acid was obtained with the highest selectivity of 76%.
EN
Use of alternative fuels in compression ignition engines is the topic for many studies. This paper presents the results of lubricity, calorific value, viscosity, surface tension and density of a ketone blend with diesel to use as a fuel in compression ignition engine. Analyses of fuel properties are vital due to their effect on fuel system. In addition, this study is related to the development of future biofuels and it indicates the effect of oxygen double bond in molecular structure of ketones on important fuel properties. Cyclopentanone which has cyclic molecular structure was used; it can be produced from lignocellulosic biomass through various processing ways. This ketone was blended with diesel fuel at 10% vol. Results from fuel properties tests were compared to the conventional diesel fuel. In the next step this blend was tested in a research diesel engine to analyse its combustion behaviour and emission characteristics of exhaust gases; these results were compared with ultra-low sulphur diesel fuel. Results showed that cyclopentanone, as an additive to diesel, improved surface tension and density of the fuel but in contrast had negative effect on viscosity, lubricity and calorific value of the fuel, but still in the standard range. Combustion behaviour of this fuel in the diesel engine also showed longer ignition delay of ketone blend and also that gaseous emission such as CO and THC are higher than from diesel fuel and NOx emission is less than from conventional diesel fuel combustion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.