Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cyclonic-static micro-bubble flotation column
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The cyclonic-static micro-bubble flotation column (FCSMC) performs well in fine mineral flotation. Compared to traditional flotation columns, its design innovatively introduces a cyclonic structure. The separation of middling and tailing occurs in the cyclonic flow field induced by a cyclonic reversal cone. In this study, the particle size distribution analysis and computational fluid dynamics (CFD) simulations were conducted to reveal the particle distribution law and the classification mechanism in cyclonic flow fields under different circulation pressures. The results showed that particle size showed the same distribution tendency as tangential velocity in the radial direction: both increase from the center and decrease around the wall. As circulation flux increased, the tangential velocity increased, and the particle size differences in the radial direction also increased. The position of the largest particles will move to outside as the largest value of tangential velocity migrates the outward in the radial direction. According to the particle size distribution of the feed, it can be adjusted to the flow field to change the particle distribution, thereby improving the efficiency of separation. This study has an important guiding significance for column design and adjustment of the operating parameters of the flotation process.
EN
In this work a novel cyclonic-static micro bubble flotation column, using hydraulic separator with a conventional flotation column, was developed to separate oil droplets from emulsions. The system integrated the cyclonic and laminar flow coalescence with the pipe flow coalescence. The effect of process parameters such as circulation pressure, aeration rate, feed volumetric flow rate and viscosity of fluid on the efficiency of multi-flow pattern coalescence was investigated. The obtained results indicated that the coalescence efficiency increased with the circulation pressure, feed volumetric flow rate and aeration rate, whereas an increase in viscosity of fluid reduced the extent of coalescence. Besides, the size distribution of oil droplets in the cyclonic separator, pipe flow section and column flotation section were simulated in the flotation column using a special software. The simulation was compared with experimental data on the mean size of oil droplets.
EN
A cyclonic-static micro-bubble flotation column was applied to upgrade fine ilmenite. The optimum parameters of flotation in the column were determined basing on the grade-recovery upgrading curve. A continuous pilot plant test was conducted using the optimum parameters during rougher-cleaner process. When compared with the optimized parameters of the industrial flotation machines, the cyclonic-static micro-bubble flotation column provides higher concentrate grade and recovery: 48.11% with a growth of 1.08 percentage points and 82.36% with an increment of 13.64 percentage points, respectively. Moreover, the flowsheet is simplified to two steps (rougher-cleaner) in the cyclonic-static micro-bubble flotation column from six steps (one rougher-two scavengers-three cleaners) in the flotation machines. Therefore, the cyclonic-static micro-bubble flotation column is an effective tool for fine ilmenite beneficiation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.