Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cushion
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this experimental study was to compare the ability of polyurethane cushions of three arbitrary selected thicknesses to minimize vibrations transmitted from the wheelchair to its user. Methods: Measurements were made during passive motion on five different surfaces often found in public spaces. Two tests were carried out during the measurements. In the first test, the sensor was located directly on the surface of the wheelchair seat. In the second test, a polyurethane cushion was placed on the seat, on which the measuring sensor was then placed. Results: The study showed that regardless of the surface on which the wheelchair user moves, the threshold defined in the ISO standard for frequencies in the range of 4–40 Hz was exceeded. However, thanks to the use of polyurethane cushions, vibration damping was visible for frequencies ranging from 10 to 40 Hz. The impact of the user’s weight on the magnitude of the perceived vibrations was also observed. Conclusions: Studies show that wheelchair users are exposed to whole body vibration that can negatively affect their health. Cushions made of polyurethane seem to be a promising solution to reduce whole body vibration in the frequency range that is burdensome and harmful to human health.
EN
Ensuring the safety of existing structures is an important issue when planning and executing adjacent new foundation pit excavations. Hence, understanding the stress state conditions experienced by the soil element behind a retaining wall at a given location during different excavation stages has been a key observational modelling aspect of the performance of excavations. By establishing and carrying out sophisticated soil–structure interaction analyses, stress paths render clarity on soil deformation mechanism. On the other hand, column-type soft ground treatment has recently got exceeding attention and practical implementation. So, the soil stress–strain response to excavation-induced disturbances needs to be known as well. To this end, this paper discusses the stress change and redistribution phenomena in a treated ground based on 3D numerical analyses. The simulation was verified against results from a 1 g indoor experimental test conducted on composite foundation reinforced with long and short cement–fly ash–gravel (CFG) pile adjacent to a moving rigid retaining wall. It was observed that the stress path for each monitoring point in the shallow depth undergoes a process of stress unloading at various dropping amounts of principal stress components in a complex manner. The closer the soil element is to the wall, the more it experiences a change in principal stress components as the wall movement progresses; also, the induced stress disturbance weakens significantly as the observation point becomes farther away from the wall. Accordingly, the overall vertical load-sharing percentage of the upper soil reduces proportionally.
EN
Properties of supporting surfaces of a seat have an influence on postural control. Centre of pressure (COP) displacement parameters reflect both the balance controlling process and movements of the centre of a mass of entire body. The subjects of the study were 9 healthy men. A seat cushion was examined with a 2-force platform setup. Force exertion at a seat pan and feet and COP displacement at a seat pan were measured to analyse postural control. Analysis of variance determined the differences in postural control depending on a cushion type among the subjects. Significant differences in COP displacement parameters were in COP trajectory length, medio-lateral COP displacement and COP velocity. The results of the study showed that foam cushion ensures better postural control.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.