Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  curvature morphology
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The curvature morphology of the articulating surfaces determines the physiological movement pattern. We quantitatively examined the curvature morphology of the tibiotalar articulating surfaces and specified their geometric contact patterns. Methods: Geometrically equivalent cartographic nets were marked on the talar and tibial articulating surfaces of true-to-scale moldings of 20 human ankle joints (intervals of 5 mm) to relate corresponding articulating units of the surfaces. The corresponding contours of the net lines were compared, and the incongruity of articulating surfaces could thus be quantified locally. Results: All tibial sagittal net lines represented circular arcs. Along the sagittal talar net lines, the curvature radii increased medially from anterior to posterior but decreased laterally. Each net line could be approximated by three circular arcs. Examining these three parts of the talar net lines, the anterior sagittal curvature radii increased from medial to lateral, whereas the posterior radii decreased. The tibial and talar transversal net lines were congruent. The articulation surfaces showed a transversal contact line in every dorsal/plantar joint position. The degree of local congruity was solely ascertained by the incongruity of the corresponding sagittal net lines. The maximal degrees of congruity were found laterally for dorsal flexion, laterally/centrally for neutral joint position, and centrally/medially for plantar flexion. Conclusions: By the transversal line contact, the contact area is broadened over the articulating surfaces from lateral to medial. In dorsal flexion, compressive loads are mainly transferred by lateral/anterior zones and in plantar flexion by medial/posterior zones of the articulating surfaces. Reconstruction of the transversal contact line is essential.
EN
Purpose: The purpose is to present a mathematical model of the function of the thumb carpometacarpal joint (TCMCJ) based on measurements of human joints. In the TCMCJ both articulating surfaces are saddle-shaped. The aim was to geometrically survey the shapes of the articulating surfaces using precise replicas of 28 TCMCJs. Methods: None of these 56 articulating surfaces did mathematically extend the differential geometrical neighbourhood around the main saddle point so that each surface could be characterised by three main parameters: the two extreme radii of curvature in the main saddle point and the angle between the saddles’ asymptotics (straight lines). Results: The articulating surfaces, when contacting at the respective main saddle points, are incongruent. Hence, the TCMCJ has functionally five kinematical degrees of freedom (DOF); two DOF belong to flexion/extension, two to ab-/adduction. These four DOF are controlled by the muscular apparatus. The fifth DOF, axial rotation, cannot be adjusted but stabilized by the muscular apparatus so that physiologically under compressive load axial rotation does not exceed an angle of approximately ±3°. Conclusions: The TCMCJ can be stimulated by the muscular apparatus to circumduct. The mechanisms are traced back to the curvature incongruity of the saddle surfaces. Hence we mathematically proved that none of the individual saddle surfaces can be described by a quadratic saddle surface as is often assumed in literature. We derived an algebraic formula with which the articulating surfaces in the TCMCJ can be quantitatively described. This formula can be used to shape the articulating surfaces in physiologically equivalent TCMCJ-prostheses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.