Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  curcumin
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The packaging industry responding to growing consumer demands for product safety, seeks active packaging that allows controlled antioxidant release through incorporating anthocyanin, curcumin, cinnamaldehyde, and other polyphenolic compounds to enhance functional properties of the film antimicrobial interfacial interaction. The research focuses on exploring the impact of adding curcumin and anthocyanin to sugar palm starch/chitosan bionanocomposite films, specifically examining the release kinetics of these bioactive compounds. The biocomposite film with added curcumin exhibits a smoother surface compared to the anthocyanin-based film. Although the thermal stability of the CH/SPS matrix remains unaffected by the addition of anthocyanin and curcumin, the inclusion of these compounds significantly reduces the melting enthalpy of the CH/SPS matrix. Specifically, the addition of curcumin decreases it from 142.96 J/g to 23.43 J/g, and the addition of anthocyanin reduces it to 33.22 J/g. Anthocyanin release from the CH/SPS matrix into water conforms to the Kosmeye-Peppas model (R2 = 0.9808, n = 0.1177), while the release kinetics of curcumin compounds adhere to the Higuchi model (R2 = 0.9968). These findings provide advantageous insights that potentially have implications for a variety of applications, particularly in areas such as sustainable food packaging.
EN
The natural wound healing process consists of four basic phases: homeostasis, inflammation, proliferation, and remodelling. Macrophages play an important role in the body’s response to biomaterials, as they are modulators of the wound healing process and can polarize into different phenotypes capable of inducing both deleterious and beneficial effects on tissue repair. Curcumin (CU) is known for its anti-inflammatory properties and has the potential to treat diabetic foot ulcers, but it should be delivered to wounds in a controlled manner. In this study, the encapsulation of curcumin in polymeric microparticles based on poly(sebacic anhydride) (PSA) was developed using an emulsification method. PSA-based microparticles containing different concentrations of CU were obtained: 0% weight (wt). CU (unloaded microparticles), 5, 10, and 20 wt% CU. CU encapsulation efficiency and loading were determined using a fluorescence-based calibration curve method and semi-quantitative Fourier-transform infrared spectroscopy (FTIR) analysis. The potential cytotoxicity of the obtained biomaterials in contact with primary human macrophages and their susceptibility to polarization from the M1 (pro-inflammatory) phenotype to the M2 (antiinflammatory) phenotype were evaluated. The morphology of cells cultured in contact with polymeric microparticles was evaluated using phalloidin red and 4′,6-diamidino2-phenylindole (DAPI) staining. Macrophage phenotype was assessed using flow cytometry. The obtained biomaterials showed no cytotoxic effect on primary human macrophages. Flow cytometry studies showed enhanced polarization of macrophages into anti-inflammatory M2 phenotype when exposed to microparticles loaded with CU and CU powder as compared to unloaded microparticles
EN
Natural polymers, like chitosan, collagen, and alginate, offer promising solutions for wound healing. Derived from natural sources, they exhibit biocompatibility and bioactivity, promoting tissue regeneration. These polymers can form scaffolds or dressings that accelerate wound closure while reducing infection risks. Their inherent properties make them promising options in the quest for effective wound care materials. In this work, composites based on polyvinyl alcohol (PVA), chitosan (Chi), and curcumin (Cur) were prepared. PVA, a synthetic water-soluble polymer, finds extensive use in biomedical and wound-healing applications. It is approved by the U.S. FDA for cosmetic, medical, and wound healing products. Chi, a polysaccharide, is widely used in biomedicine and possesses antibacterial properties. Both PVA and chitosan are biocompatible and exhibit good filming characteristics. Curcumin (Cur) with antibacterial and antioxidant properties is being explored for regenerative medicine. PVA, chitosan, and curcumin were blended. The structure was studied by FTIR, microscopic observations were done with optical and scanning electron microscopes, and the mechanical properties were assessed. FTIR revealed component interactions, while microscopy showed a flat film surface. The polymeric blend (PVA/Chi/Cur) had a Young’s modulus of 1.49 GPa, tensile strength of 47.69 MPa, stress value of 8.39 N, and 35.34% elongation at break. These properties make the blend suitable for consideration in wound healing applications.
PL
Od wieków człowiek wykorzystuje produkty roślinne nie tylko do celów kulinarnych, ale i leczniczych. Ostryż barwierski (długi/kurkuma) należy do rodziny imbirowatych i na szeroką skalę uprawiany jest w Azji. Ważnym jego producentem są Chiny, ale światową potęgę w jego uprawie stanowią Indie. Jest to roślina wykorzystywana jako przyprawa oraz jako barwnik spożywczy, a także w medycynie. Czynnikami biologicznie aktywnymi, którym kurkuma zawdzięcza swoje niezwykłe właściwości i kolor, są kurkuminoidy. Jest to grupa substancji, do których zalicza się kurkuminę, demetoksykurkuminę oraz bis-demetoksykurkuminę. Kurkumina stosowana jest jako żółtopomarańczowy barwnik spożywczy. Może być używana jako samodzielny dodatek do potraw lub składnik mieszanek przyprawowych, np. curry. Do najważniejszych prozdrowotnych działań obserwowanych po podaniu kurkuminoidów zalicza się działanie przeciwzapalne, przeciwnowotworowe i antyoksydacyjne. Jak donoszą aktualne badania związki zawarte w kurkumie mogą przyczynić się do ochrony organizmu przed zakażeniem SARS-CoV-2.
EN
For centuries, man has been using plant products not only for culinary but also for medicinal purposes. Turmeric (long) belongs to the ginger family and is grown extensively in Asia. China is an important producer, but India is the world power in its cultivation. It is a plant used spice and as a food dye, and also in medicine. Curcuminoids are the biologically active factors that give turmeric its extraordinary properties and color. It is a group of substances that include curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. It can be used as an independent additive to dishes or as an ingredient in spice mixtures, e.g. curry. The most important pro-health effects observed after the use of curcuminoids are anti-inflammatory, anti-cancer and antioxidant effects. According to current research, compounds in turmeric may protect the body against SARS-CoV-2 infection.
EN
Microparticles (MPs) made of fast biodegrading biomaterials, loaded with drugs, are considered a superior treatment method for pulmonary infections. One of the promising biomaterials for obtaining such a drug delivery system (DDS) is poly(sebacic anhydride) (PSA) due to its favourable degradation kinetics and mechanism. In this paper, we present a study of manufacturing MPs from PSA loaded with curcumin (CU) for pulmonary purposes. MPs were manufactured by oil-in-water emulsification; their morphology and size distribution were evaluated using optical microscopy, while the encapsulation efficiency and drug loading were obtained by the fluorometric assay. The cytotoxicity of the MPs, both the empty ones and loaded with CU, was analysed by in vitro tests with BEAS-2B human lung epithelial cells. To this end, metabolic activity by AlamarBlue assay and fluorescent staining (DAPI/ eosin) of the cells were performed. The MPs produced were round, regular in shape with diameters in the range of 1-5 µm and of yellow colour originating from CU. The CU encapsulation efficiency ranged from 42% to 55% and decreased with a higher CU ratio. The drug loading ranged from 4% to 11% and increased at a higher CU ratio. Both empty and CU-loaded MPs did not show a cytotoxic effect at concentrations up to 10 µg/ml.
EN
The rats were randomly divided into paraquat group, curcumin treatment group, and pirfenidone treatment group. The concentration of paraquat in rat plasma was determined by an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method over the range of 10–2000 ng mL−1. Chromatographic separation was achieved on a BEH HILIC (2.1 mm × 100 mm, 1.7 μm) column. The mobile phase was consisted of acetonitrile and 10 mm ammonium formate buffer (containing 0.1% formic acid) with gradient elution pumped at a flow rate of 0.4 mL min−1. Protein precipitation with acetonitrile was used as sample preparation. Compared with the paraquat group, there is statistical toxicokinetic difference for curcumin treatment group and pirfenidone treatment group, AUC(0 − t) decreased (P < 0.05), clearance (CL) increased (P < 0.05) for curcumin or pirfenidone treatment group, and Cmax decreased (P < 0.05) for curcumin treatment group. The results showed that treatment by curcumin and pirfenidone could relieve acute paraquat poisoning in rats.
EN
Curcumin is the main bioactive constituent of turmeric rhizome. A wide range of pharmacological activities of curcumin has been reported. There has been growing interest in the development of preparative purification of curcumin. The objective of this study is the isolation of curcumin from other components by using recycling preparative HPLC method from curcuma longa L. The extraction was achieved by using ultrasonic system with three different solvents, including acetone, dichloromethane, and ethanol. After optimization of extraction process, preparative HPLC system was first applied for separation of curcumin. Because of poor resolution of preparative HPLC, recycled preparative HPLC was applied for separation of curcumin with higher purity up to five cycles. Recycled preparative HPLC resulted in improvement in separation factors which led to the increase of curcumin purity up to 99.5%. This method is simple, highly efficient, environmentally friendly, and has been demonstrated to be effective for preparation and purification of curcumin from curcuma longa L.
EN
Neutral complexes of Cu(II), Ni(II), Co(II), VO(II) and Zn(II) have been synthesized from the new Schiff base de rived from curcumin and 4-aminoantipyrine. The structural features of the com plexes have been de ter mined from their microanalytical, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H-NMR, mass and ESR spectral data. All the complexes exhibit square planar geometry while vanadyl complex exists in a square pyramidal geome try. Their magnetic susceptibility measurements and low conductance data provideevidence for the monomeric and non-electrolytic nature of the complexes respectively. Mass, 1H-NMR spectra of the Schiff base and its com plexes suggest that the general formula of the complexes is [ML2]. The redox behaviour of the Cu(II), Ni(II) and VO(II) complexes in MeCN at 300 K was studied by using cyclic voltammetry. The X-band ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features were discussed. The antimicrobial activity of the ligand and its complexes against the bacteria Staphylococus aureus, Bacillus subtilis, Klebsiella pneumoniae, Salm nella typhi, Pseud monas aeruginosa and Shigella flexneri are also reported.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.