A fuzzy approach to segmentation of the cruciate ligaments of the knee joint and a three dimensional visualisation method are presented in this paper. The cruciate ligaments are the major stabilizers of the knee. The ligaments injuries are common nowadays and a correct diagnostics, preceding the surgical therapy is a very important task. Segmentation of the ligaments is difficult due to a poor visibility of edges in some cases of injuries and their appearance on a small number of slides at Magnetic Resonance Imaging (MRI). The method described here is based on fuzzy connectedness principles. It creates a fuzzy connectivity scene by assigning a strength of connectedness to each possible path between some predefined seed point and any other image element. Then such scene is thresholded to produce final segmentation result. The conventional fuzzy connectedness method with Dijkstra algorithm for creating the fuzzy connectivity scene has been implemented in a 3D space. The object, being the result of segmentation process, is visualised in the Visualisation Toolkit (VTK) environment. The method has been tested on a set of images. An example of its performance is shown along with some plans for future research.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This work is concerned with improving the design of textile scaffolds used to tissueengineer anterior cruciate ligaments. Two important design criteria of a scaffold are internal structure and cell-fibre compatibility. This paper considers both of these criteria, providing a review of scaffold design and structural parameters, followed by experiments on the biocompatibility of various generic fibres. In this paper, the influence of surface area to volume ratio and polymer morphology on cell-surface interactions is discussed, together with a consideration of the effect of poresize and scaffold porosity on cell proliferation, migration and nutrient supply. Another structural factor discussed is the role of fibre orientation as a means of guiding and organising new tissue growth. It is possible to manipulate these scaffold parameters to produce a scaffold of optimal structural design for the tissue engineering of the anterior cruciate ligament. A review of current scaffold types classified according to manufacturing method is presented. These manufacturing methods include solvent casting/particulate leaching, three-dimensional printing and fibre bonding. Scaffolds in fibrous form include woven, knitted, braided, embroidered and more recently nonwoven. Biocompatibility tests performed by the authors study the reaction of fibroblast cells to the surface of different generic fibre types; including para-aramid, polyester, polypropylene, polyglycolic acid and viscose rayon. The results of these tests are discussed in relation to cell attachment and fibre morphology.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.