Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cross-sea bridge
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fatigue properties of orthotropic steel bridge deck of Xinghai Bay Cross-sea Bridge in Dalian were analyzed. The segment model of orthotropic bridge deck was established by using the finite element software Abaqus. The intersection between diaphragm and U-rib was selected to analysis. The fatigue loading model III was adopted which was provided by “Specifications for Design of Highway Steel Bridge”. First, the transverse stress influence line and the transverse severest loading position were determined. Then, five loading regions were selected near the transverse severest position. The stress amplitude of the intersection was ascertained through loading on the longitudinal bridge for each region. Finally, the fatigue checking for the intersection was carried out. The results showed that the maximum fatigue stress amplitude of orthotropic deck in Xinghai Bay Cross-sea Bridge met the requirements of "Specifications for Design of Highway Steel Bridge".
EN
The bearing response of pile foundations for cross-sea bridge subjected to lateral loading is investigated through threedimensional finite element numerical analyses. In the analyses, non-linear behavior of concrete is simulated using smeared cracking model, and the strain-stress relationship of rebar is modeled through perfectly elasto-plastic model obeying Mises yield criterion. The finite element model is validated against published lateral static loading test in situ. The effect of reinforcement ratio of reinforced concrete and vertical load level is explored on the displacement of pile head and lateral capacity of pile. The results show that for the pile with low reinforcement ratio, the allowable lateral capacity is controlled by concrete cracking, however the allowable lateral capacity is controlled by the displacement of pile head with high reinforcement ratio. The vertical load applied on the pile head may reduce its displacement but increase simultaneously the maximum moment in the pile body. Therefore, the optimum vertical load level is 0.4~0.6 times of the vertical ultimate load of a single pile.
EN
To solve the problem of low precision of numerical simulation of the exposed reinforced anti-corrosion layer damage of the cross-sea bridge, we use the stress ratio between the double slash and the reinforced anti-corrosion layer to analyze the parameters and the damage rate in different qualities of reinforced anti-corrosion layers, use Ansys software to build reinforced finite element model, and analyze the damage degree when the inclination angle was 15 °, 45 ° and 60 °, respectively. The experimental results showed that the proposed method can improve the numerical simulation efficiency, the numerical simulation results, the experimental results, and the theoretical analysis results have good consistency and stability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.