Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  crop yield monitoring
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Agriculture is sighted more use cases of drones, and with the expanding population, food yields are becoming more well organized. Drones are used in examining crops and exploiting data to determine what requires greater attention. This research study focuses on how deep learning (DL) has been used with drone technology to create solutions for detecting crop fields within a certain regions of interest (ROI). Extracting images from a drone and analysing them with a DL system to identify crop fields and yields for less-developed nations are solution to a prevalent challenge that land use–land cover (LULC) encounters. The limitations of drone spot-checking in the context of agricultural fields and the constraints of utilizing DL to detect yields. Also, a novel method is offered for detecting and tracking crop fields using a single camera on our UAV. The estimated background movements using a perspective transformation model given a sequence of video frames and then locate distinct locations in the background removed picture to detect moving objects. The optical flow matching is used to determine the spatiotemporal features of each moving item and then categorize our targets, which have considerably different motions than the backdrop. Kalman filter tracking has used to ensure that our detections are consistent across time. The hybrid crop field detection model is to evaluate on real uncrewed aerial vehicle (UAV) recordings. And the findings suggest that hybrid crop field detection successfully detects and tracks crop fields through tiny UAV’s with low computational resources. A crop field module, which aids in reconstruction quality evaluation by cropping specific ROIs from the whole field, and a reversing module, which projects ROIs-Vellore to relative raw pictures, are included in the proposed method. The results exhibit faster identification of cropping and reversing modules, impacting ROI height selection and reverse extraction of ROI location from raw pictures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.