Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  crankshaft system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents a consideration of the influence of a damper of torsional vibrations (TVD) on transverse dynamics of the crankshaft. Dampers of this type work based on the dynamic eliminator of vibrations. The systems of this type in modern combustion engines are more often used to reduce torsional vibrations. It is strictly connected with the increase of fatigue life of the crankshaft in case when its amplitude of vibrations has a crucial meaning. Computation models used to choose a damper assume that transverse and torsional vibrations occurring in a crank system are not coupled. Modern trends in machine design make the new devices lighter and less rigid. Therefore, the couplings between small vibrations may be more important. Therefore, the effects observed in angular vibrations can be transmitted to transverse vibrations. In this context, the impact of dampers TVD on transverse dynamics is particularly interesting. In the introduction, the article discusses the basic types of torsional vibration dampers and the method of selection of this type of systems. The next part of the article presents the model of a combustion engine with a dynamic eliminator of vibrations, which includes bending-torsional vibrations occurring in the system. For this purpose, the linear relation of the vector of generalized co-ordinates and generalized forces in the system was assumed. The next part shows numerical simulations, which were carried out in the paper. The paper presents obtained results with their further analysis in frequency domain. The whole paper is summarized with synthetic conclusions on the simulations, the impact of applied eliminator on the dynamics of the entire crank system, in particular transverse vibrations. In addition, there was indicated a possibility of using presented results in research and diagnostics used in automotive industry of torsional vibration dampers.
EN
The article presents the problem of modelling coupled bending-torsional vibrations in crank systems. Because during the design of modern drive systems a growing number of phenomena are taken into account, model description of such vibrations has a practical meaning. Commonly used models of dynamics of systems assume the independence of torsional and bending vibrations, which leads to simultaneous analysis of transverse and angular vibrations. Further analysis is carried out with the use of superposition principle. Such an approach is justified in the case of quite rigid drive shafts, where vibrations are relatively small. Current trends in the design of reducing weight, reduction of toxic emissions and reducing fuel consumption, lead to the situation where shafts in crank systems become less stiff. Therefore, phenomena neglected earlier may have significant meaning. Analysis of couplings of transverse and torsional vibrations is so important that the occurrence of these phenomena usually leads to new critical states, which may be especially dangerous for engine operation. Considerations on the reasons of the occurrence and kinds of vibration couplings were presented in the introduction of the article. Further part of the article proposes the linear-bending model of the crankshaft, where transverse and angular displacements are dependent. It was tantamount to the assumption of linear relation between the vector of generalized co-ordinates and generalized forces occurring in the system. The next chapter presents the system of equations describing the dynamics of the crankshaft together with a discussion of the co-ordinate system used in the considerations. In addition, there were presented the results of numerical simulations in frequency domain confirming the conclusions taken from the analysis. The whole paper is concluded with synthetic conclusions on the formulated system of equations, simulations and the influence of the coupling on the dynamics of the whole crank system.
3
EN
The volume of combustion chamber consists of head and cylinder spaces. The distribution of volumes in the cylinder depends on accuracy of dimensions, determined by the production process, and precision of the crankshaft system assembling. Therefore, the aim of this work is to present a correct method of assembling, and give an example of analysis of crankshaft system dimensions based on the engine family type Wola-135TC.
PL
Na objętość komory spalania składa się przestrzeń w głowicy i cylindrze. Od dokładności wykonania wymiarów i staranności montażu układu korbowego zależy rozrzut objętości w cylindrze. Stąd w niniejszej pracy przedstawiono prawidłowy sposób montażu i dokonano analizy wyników układu korbowego na przykładzie rodziny silników Wola-135TC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.