Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  coyote optimization algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Systemic Lupus Erythematosus (SLE) is a complicated autoimmune disease that can present with a variety of clinical symptoms, making precise prognosis difficult. Because SLE has a wide range of symptoms and may overlap with other autoimmune and inflammatory disorders, making a diagnosis can be challenging. This study creates a precise and accurate model for the prediction of SLE using the GEO dataset. For cost-effective data collection and analysis, feature selection might be essential in some applications, particularly in healthcare and scientific research. The strength of Artificial Neural Networks (ANN) for Systemic Lupus Erythematosus prediction and the Coyote Optimization Algorithm (COA) for feature selection are combined in this study. The COA is an optimization method influenced by nature and coyote hunting behavior. This study attempts to improve the effectiveness of subsequent predictive modeling by using COA to identify a subset of significant features from high-dimensional datasets linked to SLE. A Multi-layer Feed-forward Neural Network, a potent machine learning architecture renowned for its capacity to discover complex patterns and correlations within data, is then given the chosen features. Because the neural network is built to capture SLE's intricate and non-linear structure, it offers a reliable foundation for precise classification and prediction. The accuracy of the COA-ANN model was 99.6%.
PL
Toczeń rumieniowaty układowy (SLE) jest skomplikowaną chorobą autoimmunologiczną, która może objawiać się różnymi objawami klinicznymi, co utrudnia dokładne rokowanie. Ponieważ SLE ma szeroki zakres objawów i może nakładać się na inne choroby autoimmunologiczne i zapalne, postawienie diagnozy może być trudne. Niniejsze badanie tworzy precyzyjny i dokładny model przewidywania SLE z wykorzystaniem zbioru danych GEO. W celu efektywnego kosztowo gromadzenia i analizy danych, wybór cech może być niezbędny w niektórych zastosowaniach, szczególnie w opiece zdrowotnej i badaniach naukowych. W niniejszym badaniu połączono siłę sztucznych sieci neuronowych (ANN) do przewidywania tocznia rumieniowatego układowego i algorytmu optymalizacji Coyote (COA) do wyboru cech. COA to metoda optymalizacji, na którą wpływ ma natura i zachowania łowieckie kojotów. Niniejsze badanie ma na celu poprawę skuteczności późniejszego modelowania predykcyjnego poprzez wykorzystanie COA do identyfikacji podzbioru istotnych cech z wielowymiarowych zbiorów danych powiązanych z SLE. Wielowarstwowa sieć neuronowa Feed-forward, potężna architektura uczenia maszynowego znana ze swojej zdolności do odkrywania złożonych wzorców i korelacji w danych, otrzymuje następnie wybrane cechy. Ponieważ sieć neuronowa została zbudowana w celu uchwycenia skomplikowanej i nieliniowej struktury SLE, oferuje ona niezawodną podstawę do precyzyjnej klasyfikacji i przewidywania. Dokładność modelu COA-ANN wyniosła 99,6%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.