Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  countable RCC models
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On countable RCC models
EN
Region Connection Calculus (RCC) is the most widely studied formalism of Qualitative Spatial Reasoning. It has been known for some time that each connected regular topological space provides an RCC model. These `standard' models are inevitable uncountable and regions there cannot be represented finitely. This paper, however, draws researchers' attention to RCC models that can be constructed from finite models hierarchically. Compared with those `standard' models, these countable models have the nice property that regions where can be constructed in finite steps from basic ones. We first investigate properties of three countable models introduced by Düntsch, Stell, Li and Ying, resp. In particular, we show that (i) the contact relation algebra of our minimal model is not atomic complete; and (ii) these three models are non-isomorphic. Second, for each n > 0, we construct a countable RCC model that is a sub-model of the standard model over the Euclidean unit n-cube; and show that all these countable models are non-isomorphic. Third, we show that every finite model can be isomorphically embedded in any RCC model. This leads to a simple proof for the result that each consistent spatial network has a realization in any RCC model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.