Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  convection heat transfer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncertainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate temperature below 100°C.
2
Content available remote Analytical solution of forced-convective boundary-layer flow over a flat plate
EN
In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differential equations governing on the problem is developed. Comparison between results obtained and those of numerical solution shows excellent agreement, illustrating the effectiveness of the method. The solution obtained by ADM gives an explicit expression of temperature distribution and velocity distribution over a flat plate.
PL
W artykule przedstawiono zastosowanie metody dekompozycji Adomiana do wymuszonego, konwekcyjnie przepływu ciepła w poziomej, płaskiej płycie. Rozwiązania nieliniowych równań różniczkowych opisujących zagadnienie poszukiwana w postaci szeregów Adomiana. Z porównania otrzymanych wyników z wynikami innych metod numerycznych wynika doskonała ich zgodność, która potwierdza skuteczność zastosowanej metody. Otrzymane rozwiązanie pozwoliło jednoznacznie wyznaczyć rozkład i prędkości mian temperatury w analizowanej płycie.
EN
We consider the steady, laminar natural convection heat transfer of a particulate suspension in an electrically-conducting fluid through a two-dimensional channel containing a non-Darcian porous material in the presence of a transverse magnetic field. The transport equations for both fluid and particle phases are formulated using a two-phase continuum model and a heat source term is included which simulates either absorption or generation. A set of transformations are implemented to reduce the partial differential equations for momentum and energy conservation (for both phases) from a two-dimensional coordinate system to a one-dimensional system. Finite element solutions are obtained for the transformed model. A comprehensive parametric study of the effects of the heat source parameter (E), Prandtl number (Pr), Grashof number (Gr), momentum inverse Stokes number (Skm), Darcy number (Da), Forchheimer number (Fs), particle loading parameter (PL), buoyancy parameter (B), Hartmann number (Ha), temperature inverse Stokes number (SkT), viscosity ratio [...], specific heat ratio [...], dimensionless particle-phase wall slip parameter [...] on the dimensionless fluid phase velocity (U), dimensionless particle phase velocity ( ), dimensionless fluid phase temperature [...] and the dimensionless temperature of particle phase [...] are presented graphically. In addition, we also describe numerical solutions for several special cases of the model, for example, the inviscid hydromagnetic two phase non-Darcian free convection, heat transfer [...], forced convection case (GrŽ0) etc. Fluid phase velocities are found to be strongly reduced by the magnetic field, Darcian drag and also Forchheimer drag; a lesser reduction is observed for the particle phase velocity field. The Prandtl number is shown to depress both the fluid temperature and particle phase temperature in the left hand side of the channel but to boost both temperatures at the right hand side of the channel [...]. The inverse momentum Stokes number is seen to reduce fluid phase velocities and increase particle phase velocities. The influence of other thermophysical parameters is discussed in detail and computations compared with previous studies. The model finds applications in MHD plasma accelerators, astrophysical flows, geophysics, geothermics and industrial materials processing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.