Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  contact wires
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To evaluate the occupational safety of a high signal operator exposed to the electric field induced by contact wires with a frequency of 50 Hz and a voltage of 27.5 kV, this study established a model of a high signal operator working in the vicinity of single and double-track railways. The electric field distribution in the operator’s body and his head were calculated and analyzed during the operation using the finite element method (FEM). The calculated results were compared with the international standard occupational exposure limits formulated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and action levels (ALs), exposure limit values (ELVs) in Directive 2013/35/EU (EU Directive). In the case of a single-track railway exposure, the maximum electric field strength in the worker’s body, in the scalp layer, and inside the brain are 227 mV/m, 2.76 kV/m, and 0.14 mV/m, respectively. For a double-track railway exposure, the maximum internal electric field strength of the operator is 310 mV/m, which is 37.85% of the occupational exposure basic restriction limit. The maximum electric field strength in the head layers is 3.42 kV/m, which is 34.2% of the occupational exposure reference level and 34.2% of the low ALs. The maximum electric field strength of the brain is 0.19 mV/m, which is 0.19% of the occupational basic restriction limit and 0.135% of the sensory effects ELVs. Results show that the electric field exposure of the high signal operator to contact wires in single- and double-track railways is lower than the occupational exposure limits provided by the ICNIRP and EU Directive standards and is thus regarded as safe for workers.
PL
Nowoczesne systemy sieci trakcyjnych dużej prędkości jazdy oraz zwiększonych mas pociagów wymaga zastosowania materiałów na przewody jezdne o zwiększonych parametrach wytrzymałościowych, przy jednoczesnym zapewnieniu mozliwie najwyższej przewodności elektrycznej, co wynika z konieczności zapewnienia bezzakłóceniowego odbioru prądu przez odbierak prądu z sieci w warunkach dużej prędkości jazdy pojazdów szynowych. Jednym z materialów zapewniających korzystną relacje całego zespołu właściwości - mechanicznych, elektrycznych, reologicznych i tribologicznych - przewodu jezdnego w realich polskiego systemu zasilania kolei średnim napięciem 3 kV DC oraz miedź srebrowa w gatunku CuAg0, 10.
PL
Artykuł poświęcony jest badaniom odporności cieplnej przewodów jezdnych przeznaczonych do zastosowania w nowoczesnych sieciach trakcyjnych o wysokiej obciążalności mechanicznej oraz prądowej. Eksploatowany obecnie system sieci trakcyjnych w Polsce wykorzystuje elementy nośne i przewodzące wykonane z miedzi elektrolitycznej. Chociaż posiada to swoje uzasadnienie z uwagi na własności elektryczne miedzi, to takie rozwiązanie jest niewystarczające ze wzglądu na zbyt niską odporność cieplną w przypadku nowo projektowanych traktów kolejowych wchodzących w skład europejskich korytarzy transportowych. Nowoczesne sieci trakcyjne dużej prędkości jazdy oraz zwiększonych mas towarowych wymagają zastosowania materiałów na elementy przewodzące o podwyższonych parametrach wytrzymałościowych przy jednoczesnym zapewnieniu możliwie najwyższej przewodności elektrycznej, co wynika z konieczności zapewnienia bezzakłóceniowego odbioru prądu przez odbierak prądu z sieci w warunkach dużej prędkości oraz z faktu, że krajowy system zasilania trakcji wynosi 3 kVDC. Jednym z materiałów zapewniających korzystną relację całego zespołu własności - mechanicznych, elektrycznych, reologicznych i tribologicznych-przewodu jezdnego jest miedź srebrowa gat. CuAg0,10. Badania prowadzone były na przewodach jezdnych nowej generacji wykonanych z miedzi srebrowej o przekroju 100 mm2, przeznaczonych do stosowania w warunkach podwyższonej temperatury ich eksploatacji oraz dla porównania na tradycyjnych przewodach jezdnych wykonanych z miedzi elektrolitycznej. W pracy przedstawiono charakterystyki zmian własności mechanicznych przewodów poddanych działaniu temperatury i czasu ekspozycji, a także po testach miejscowego nagrzewania prądowego przewodu jezdnego przez nakładkę stykową ślizgacza odbieraka prądu symulujących warunki odbioru prądu z sieci. Na podstawie przeprowadzonych badań stwierdzono, że dodatek srebra do miedzi w ilości 1000 ppm podwyższa temperaturę rekrystalizacji przewodów jezdnych o ok. 150 °C w stosunku do przewodów jezdnych z miedzi elektrolitycznej. Przekłada się to na możliwość zwiększenia obciążalności prądowej sieci trakcyjnej wykorzystującej elementy przewodzące wykonane z miedzi srebrowej gat. CuAg0,10 o ponad 30 %, przy jednoczesnym zapewnieniu stabilności wysokich własności mechanicznych pozwalających na spełnienie założeń konstrukcyjnych sieci dla szybkich pojazdów szynowych.
EN
The paper is dedicated to researches of trolley wires heat resistance devoted for modern traction lines with a high mechanical and current-carrying capacity. System of traction lines operates nowadays in Poland used mechanical and conductive elements made from electrolytic copper. Although it's well grounded by electrical properties of cooper, but this solution is not efficient because of low heat resistance in a case of new-design traction lines which constitutes part of the European transport corridors. Modern high-speed railroads and increasing commodity mass demands application of materials for conductive elements with higher performance properties with simultaneously assurance the highest possible electrical conduction. It is the result of necessity not-disturbed current transfer by pantograph contact tip from grid in conditions of high-speed and power consumption conditions approximate 3 kV DC. One of the materials that assures advantageous relation of whole prosperity group - mechanical, electrical, rheological and tribological of trolley wire is copper-silver CuAg0.10. Researches were conducted on new-generation trolley wires made from copper-silver with area 100 mm2, dedicated to use in conditions of higher temperature their exploitation and in comparison to traditional trolley wires made from electrolytic copper. In a paper the characteristics of temperature subjected trolley wires mechanical properties changes and exposition time were shown, as well as test of local electrical heating trolley wire by pantograph contact tip current collectors simulating conditions of current transfer from the power grid. Based on carried research it is possible to state that silver addition to the copper in a quantity of 1000 ppm increase the recrystallization temperature of trolley wire by about 150 °C in relation to trolley wire from electrolytic copper. It is corresponded to the increasing possibility the current capacity of traction lines which uses the conductive elements made from copper-silver CuAg0.10 for more than 30 % with simultaneous assurance stability of high mechanical properties allowing to fulfill traction construction assumptions for high-speed railroad vehicles.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.