We present a new efficient stereo algorithm addressing robust disparity estimation in the presence of noise. We propose hare a new constrained dynamic programming algorithm based on Higher Order Statistics (HOS) criteria for matching noisy images. Experiments with both synthetic and noisy real images have validated our method and have clearly shown the improvement over the existing ones. The obtained dense disparity map is more reliable when compared to the similar Second-Order Statistics (SOS) based constrained dynamic programming and HOS-based correlation methods.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.