Let X be a real normed space, V be a subset of X and α: [0, ∞) → [0, ∞) be a nondecreasing function. We say that a function f : V → [-∞, ∞) is conditionally α-convex if for each convex combination (…) of elements from V such that (…), the following inequality holds true (…). We present some necessary and some sufficient conditions for f to be conditionally α-convex.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.