Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  conditional stability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The modeling of P-waves has essential applications in seismology. This is because the detection of the P-waves is the first warning sign of the incoming earthquake. Thus, P-wave detection is an important part of an earthquake monitoring system. In this paper, we introduce a linear computational cost simulator for three-dimensional simulations of P-waves. We also generalize our formulations and derivation for elastic wave propagation problems. We use the alternating direction method with isogeometric finite elements to simulate seismic P-wave and elastic propagation problems. We introduce intermediate time steps and separate our differential operator into a summation of the blocks, acting along the particular coordinate axis in the sub-steps. We show that the resulting problem matrix can be represented as a multiplication of three multi-diagonal matrices, each one with B-spline basis functions along the particular axis of the spatial system of coordinates. The resulting system of linear equations can be factorized in linear O (N) computational cost in every time step of the semi-implicit method. We use our method to simulate P-wave and elastic wave propagation problems. We derive the condition for the stability for seismic waves; namely, we show that the method is stable when τ < C min{ hx,hy,hz}, where C is a constant that depends on the PDE problem and also on the degree of splines used for the spatial approximation. We conclude our presentation with numerical results for seismic P-wave and elastic wave propagation problems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.