Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  computational study
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Molecular Dynamic Simulations of a Simplified Nanofluid
EN
This study describes the methodology that was developed to run a Molecular Dynamics Simulation (MDS) code to simulate the behaviour of a single nanoparticle dispersing in a fluid with a temperature gradient. A soft disk model described by the Lennard-Jones potential is used to simulate the system. The nanoparticle is assembled via the use of four subdomains of interatomic interactions and hence presents in full resolution the transfer of energy from the fluid-to-solidto- fluid subdomains. A cluster computing system (HTCondor) was used to perform a large scale deployment of the MDS code. The obtained showcase results were successfully evaluated using three widely documented tests from the associated literature (Randomness, Radial Distribution and Velocity Autocorrelation Distribution Functions). It was discovered that the nanoparticle travels a larger distance in the fluid than the distance travelled by a fluid molecule (recovery region). The findings were confirmed by calculating the Green-Kubo self-diffusivity coefficient halfway through the simulation at which an enhancement of 156% was discovered in favour of the Nanoparticle. This might be the physical mechanism responsible for the experimentally observed thermal performance enhancement in nanofluids.
EN
The main objective of the work presented in this paper will be to present and discuss the development and implementation of a numerical model to simulate soot formation and depletion in turbulent diffusion flames. The relevance of such model lays on the importance of tying the formation of soot to the ongoing reaction mechanism so that it is fully integrated into the combustion process. The model presented is capable of taking into account the direct effects of turbulence on the amount of soot that is produced in non-premixed flames. This research focuses on the study of an axi-symmetric C2H2 - air turbulent diffusion flame issued from a 3mm round jet with Reynolds number values between 8000 and 16500. The trend observed in the net production of soot with respect to the turbulence intensity is in good agreement with the empirical results found in the literature. These reveal a decrease in soot formation with increasing turbulence. This interaction between particulates and turbulence was then exploited in order to develop a mechanical technique by which a simultaneous reduction in soot and NO x was achieved. The level of turbulence was increased locally by application of a sinusoidal pulse frequency to the fuel stream. Such technique reduced the size of the soot-prone, fuel-rich region, with respect to the equivalent steady state flame, by means of enhancing the mixing between the fuel and the oxidizer. The Realizable k-E model was employed to solve the turbulence transport, whereas the reaction was simulated with a 1-reaction step mechanism and the turbulence-chemistry interaction was solved using the Eddy Dissipation Model. The size of the time steps employed in the unsteady configuration for pulsed flames was 1/20th of the pulse period. The soot model employed in this work observed two different stages in the soot formation process: nuclei inception and particle growth. As a result two transport equations are solved mass fractions of nuclei and soot respectively. The implementation of this model is achieved through user-defined functions that supersede the source terms in the default soot transport equations. Furthermore, the production of NOx was simulated using a classic Zel'dovich mechanism with partial equilibrium assumption for release of atomic oxygen, O, and hydroxyl groups, OH.
PL
Główny cel pracy przedstawionej w niniejszej publikacji dotyczy rozwoju i wdrażania cyfrowego modelowania i symulacji procesu tworzenia i zmniejszania wydzielania się sadzy w turbulentnym płomieniu dyfuzyjnym. Znaczenie takiego modelu opiera się na realizacji modelu będącego w stanie uwzględnić bezpośrednie skutki turbulencji na ilość sadzy wytwarzanej w uprzednio niezmieszanych płomieniach. Istota tych badań skupia się na analizie osiowo-symetrycznych turbulentnych płomieni dyfuzyjnych spalania gazów: C2H2 i powietrza, wydobywających się z okrągłej dyszy o średnicy 3 mm przy wartościach liczby Reynoldsa od 8000 do 16500. Ta tendencja zaobserwowana przy powstawaniu sadzy w zależności od intensywności turbulencji jest w zgodzie z wynikami empirycznymi z literatury, wskazującymi na zmniejszenie ilości powstawania sadzy wraz ze wzrostem turbulencji. Interakcja między składnikami i turbulencją była następnie wykorzystana w celu opracowania urządzenia, w którym zostałby osiągnięty cel równoczesnego obniżenia emisji sadzy i NOx. Poziom turbulencji został zwiększony poprzez zastosowanie sinusoidalnej pulsacji do modulowania strumienia paliwa. Ta procedura zmniejsza wymiar obszaru bogatego w paliwo i podatnego na wydzielanie się sadzy poprzez wzrost wymieszania się paliwa i utleniacza. Uzyskany model k-ε był wykorzystany do rozwiązania problemu turbulentnego transportu, natomiast symulację reakcji przeprowadzono z jednokrokowym mechanizmem reakcji, a współzależność turbulencji i reakcji chemicznych została rozwiązana za pomocą Wirowego Modelu Rozpraszania. Wielkość kroku obliczeniowego w pulsującym płomieniu wynosiła 1/20 okresu impulsu. Model cząstek sadzy użyty w tej pracy uwzględniał dwa różne etapy procesu powstawania sadzy: etap powstawania jąler i etap wzrostu cząstek. W wyniku dwa rozwiązywane są dwa równania transportu - odpowiednio masy frakcji jąder i masy sadzy. Wdrożenie tego modelu odbywa się poprzez funkcje zdefiniowane przez użytkownika, zastępują one warunki źródłowe w domyślnych równaniach transportu sadzy. Ponadto, wytwarzanie NOx rozwiązano za pomocą klasycznego mechanizmu Zeldowicza z założeniem częściowej równowagi podczas wydzielania tlenu atomowego O i grup hydroksylowych OH.
EN
The work contained in this paper represents the final stage of the PhD project, where the findings from the free-jet flames were applied to a typical Diesel IC engiiie in order to investigate whether a similar outcome was feasible. For this part of the research, a computational study on the effect of staggered fuel injection in a direct injection diesel engine is performed. This work is aimed at exploring the practical applications of previous work by the authors, where simultaneous soot and NOx abatement was achieved in turbulent diffusion flames by means of pulsing the fuel stream. The soot model employed in this investigation is based on the Eddy Dissipation Concept of Magnussen, which represents a reasonable intermediate step between the empirical and the phenomenological models, as it accounts for the effects of small scale turbulence in soot formation and combustion, but does not rely on multi-step reaction mechanisms. The results hereby presented aim to capture realistic soot formation trends that are based on real physical phenomena and, hence, serve as a stepping stone for more specific development work. The geometry was based on a simplified, 60-degree section of a valve-less Caterpillar 3406 single cylinder heavy-duty engine. The RNG k-s model was employed to solve for the turbulence field and the main reaction chemistry was solved with a single-step gasoil-air mechanism, whereas the Eddy Dissipation Concept was employed to predict the turbulence-chemistry interaction and the Discrete Ordinates model used for radiation. The results showed that there is a strong interaction between the pulse sequence and combustion development, although it is difficult to judge whether these differences are due to the dwell between the first two pulses of any sequence or the sequence itself. A 4-pulse injection sequence predicted reduced soot emissions, albeit maintaining higher in-cylinder temperatures during the expansion stroke, which increased the NO x production. The investigation was performed at two engine regimes: 1600 and 2300rpm, with some significant differences in the flame structure and development seen between these.
PL
Praca zawarta w niniejszej publikacji stanowi końcowy etap przewodu doktorskiego, gdzie wyniki z badań wydobywajqcych się z dyszy płomieni były zastosowane do typowego wysokoprężnego silnika spalinowego, w celu oceny czy jest możliwy do uzyskania podobny wynik badań. W tej części badań wykonywane byly numeryczne badania symulacyjne nad wpływem rozłożonego w czasie wtrysku paliwa dla silnika wysokoprężnego z wtryskiem bezpośrednim. Praca to ma na celu zbadanie przez autorów praktycznego wykorzystania wyników dotychczasowych prac, gdzie w dyfuzyjnym płomieniu turbulentnym za pomocą pulsacji strumienia paliwa została osiągnięta jednoczesna redukcja NOx i sadzy. Wykorzystany w niniejszym opracowaniu model sadzy jest oparty o koncepcję wirów rozproszonych Magnussena, co stanowi etap pośredni między modelami empirycznymi i modelami fenomenologicznymi, jak i obejmuje on w małej skali efekt turbulencji przy tworzeniu i spalaniu sadzy, ale nie jest oparty na wieloetapowych mechanizmach reakcji. Przedstawione niniejszym wyniki mają na celu uchwycenie realistycznych trendów w tworzeniu się sadzy, trendów, które są oparte na rzeczywistych zjawiskach fizycznych, a więc mogą służyć jako podstawa do bardziej szczegółowych prac rozwojowych. Geometria została oparta na uproszczonym jednocylindrowym bezzaworowym przekroju 60-stopniowego silnika Caterpillar 3406 do maszyn ciężkich. Do rozwiązania problemu w obszarze turbulencji został wykorzystany model RNG k-ε a chemię głównych reakcji rozwiązano za pomocą jednokrokowego mechanizmu: olejnapędowy-powietrze, podczas gdy do przewidywania wyników wzajemnego oddziaływania turbulencji i chemii została wykorzystana koncepcja rozpraszania wirów a dyskretny model współrzędnych wykorzystano do oceny promieniowania. Wyniki wykazały że istnieje silne oddziaływanie pomiędzy sekwencją impulsów i rozwojem procesu spalania, chociaż trudno jest ocenić czy różnice to wynikają z oddziaływania pomiędzy dwoma pierwszymi impulsami w dowolnej sekwencji czy też w samej sekwencji impulsów. Przewiduje się że sekwencja 4 impulsów wtrysku spowoduje zmniejszenie emisji sadzy, aczkolwiek utrzyma wyższą temperaturę w cylindrach podczas suwu rozprężania, która to zwiększa wydzielanie NOx. Badania przeprowadzono w dwóch obszarach pracy silnika: 1600 i 2300 obr/min, a pomiędzy tymi obszarami uwidaczniają się niektóre istotne różnice w strukturze i rozwoju płomienia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.