Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  computational fluid mechanics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aim: This article focuses on the use of artificial neural networks to mathematically describe the parameters that determine the size of a jet fire flame. To teach the neural network, the results of a horizontal propane jet fire, carried out experimentally and using CFD mathematical modelling, were used. Project and methods: The main part of the work consisted of developing an artificial neural network to describe the flame length and propane-air mixing path lengths with good accuracy, depending on the relevant process parameters. Two types of data series were used to meet the stated objective. The first series of data came from field tests carried out by CNBOP-PIB and from research contained in scientific articles. The second type of data was provided by numerical calculations made by the authors. The methods of computational fluid mechanics were used to develop the numerical simulations. The ANSYS Fluent package was used for this purpose. Matlab 2022a was used to develop the artificial neural network and to verify it. Results: Using the nftool function included in Matlab 2022a, an artificial neural network was developed to determine the flame length Lflame and the length of the Slift-off mixing path as a function of the diameter of the dnozzle and the mass flux of gas leaving the nozzle. Using Pearson’s correlation coefficient, a selection was made of the best number of neurons in the hidden layer to describe the process parameters. The neural network developed allows Lflame and Slift-off values to be calculated with good accuracy. Conclusions: Artificial neural networks allow a function to be developed to describe the parameters that determine flame sizes in relation to process parameters. For this purpose, the results of the CFD simulations and the results of the jet fire experiments were combined to create a single neural network. The result is a ready-made function that can be used in programmes for the rapid determination of flame sizes. Such a function can support the process of creating scenarios in the event of an emergency. A correctly developed neural network provides opportunities for the mathematical description of jet fires wherever experimental measurements are not possible. Solution proposed by the authors does not require a large investment in ongoing calculations, as the network can be implemented in any programming language.
PL
Cel: W artykule skupiono się na wykorzystaniu sztucznych sieci neuronowych do opisu matematycznego parametrów określających rozmiary płomienia pożaru strumieniowego. Do uczenia sieci neuronowej wykorzystano wyniki badań poziomego pożaru strumieniowego propanu, przeprowadzone doświadczalnie i przy pomocy modelowania matematycznego metodą CFD. Projekt i metody: Główna część pracy polegała na opracowaniu sztucznej sieci neuronowej, która z dobrą dokładnością będzie opisywała długość płomienia oraz długości drogi mieszania propanu z powietrzem w zależności od istotnych parametrów procesowych. Do realizacji postawionego celu wykorzystano dwa typy serii danych. Pierwsza seria danych pochodziła z badań poligonowych wykonanych przez CNBOP-PIB oraz z badań zawartych w artykułach naukowych. Drugi typ danych dostarczyły obliczenia numeryczne wykonane przez autorów. Do opracowania symulacji numerycznych wykorzystano metody obliczeniowej mechaniki płynów. W tym celu zastosowany został pakiet ANSYS Fluent. Do opracowania sztucznej sieci neuronowej oraz jej weryfikacji użyto programu Matlab 2022a. Wyniki: Korzystając z funkcji nftool , zawartej w programie Matlab 2022a, opracowano sztuczną sieć neuronową do wyznaczenia długości płomienia Lflame i długości drogi mieszania Slift-off w zależności od średnicy dyszy dnozzle i strumienia masowego gazu opuszczającego dyszę. Do opisu parametrów procesowych wybrano najbardziej adekwatną liczbę neuronów w warstwie ukrytej. Wykorzystano do tego współczynnik korelacji Pearsona. Opracowana sieć neuronowa pozwala z dobrą dokładnością obliczyć wartości Lflame i Slift-off. Wnioski: Sztuczne sieci neuronowe pozwalają na opracowanie funkcji opisującej rozmiar płomienia w zależności od parametrów procesowych. W celu stworzenia jednej sieci neuronowej połączono wyniki symulacji CFD i wyniki doświadczeń pożarów strumieniowych. W rezultacie otrzymano gotową funkcję, która może być użyta w programach służących do szybkiego określania rozmiarów płomienia. Funkcja taka może wspomagać proces tworzenia scenariuszy na wypadek wystąpienia sytuacji awaryjnej. Poprawnie opracowana sieć neuronowa pozwala opisać w sposób matematyczny pożary strumieniowe wszędzie tam, gdzie wykonanie pomiarów doświadczalnych nie jest możliwe. Proponowane rozwiązanie nie wymaga dużych nakładów finansowych na prowadzone obliczenia, ponieważ sieć może być zaimplementowana w dowolnym języku programowania.
PL
W artykule przedstawiono symulacje numeryczne CFD oddziaływania wiatru na dachy budynków jednokondygnacyjnych. Przeprowadzono obliczenia komputerowe, na podstawie których określono rozkład ciśnienia wiatru na połaciach dachu oraz wartości sił obciążających górne krawędzie ścian budynku. Pod uwagę wzięto 9 klas wiatru (klasyfikacja z uwagi na prędkość wiatru, od wiatru gwałtownego do huraganu dewastującego). Rozpatrzono dachy jedno-, dwu- i czterospadowe. Wzięto pod uwagę różne kierunki działania wiatru. Analizę wykonano z wykorzystaniem modeli komputerowych bazujących na metodzie elementów skończonych i symulacjach numerycznych CFD. Obliczenia przeprowadzono na przykładzie budynku o wymiarach w rzucie 14x7 m.
EN
This paper presents CFD numerical simulations of wind load on the roofs of single-storey buildings. Computer calculations were carried out. Based on these, the pressure distribution on the roof surface and the distribution of forces on the upper edges of the building walls were determined. For this purpose the nine wind classes were used - classification according to wind speed (from violent wind to devastating hurricane). Single, double and hipped roofs were considered. Different wind directions were taken into account. The computational analyses were carried out using computer models based on the finite element method and CFD numerical simulations. The calculations were carried out on the example of a building with dimensions of 14x7 m in plan.
3
EN
Optimization plays an important role in scientific and engineering research. This paper presents the effects of using the catenoidal shape to design the structure of a chimney cooling tower. The paper compares some geometrical variations of the catenoid with the reference existing hyperboloidal structure. It also compares internal forces, deformation and stability of the catenoidal structure. The comparison shows some predominance of the catenoid over the popular hyperboloid structure of the shell. The paper attempts to find an optimal shape of the cooling tower in order to reduce the amount of material and labor. The paper utilizes engineering tools and the designing process for chimney cooling towers.
PL
W artykule przedstawiono wyniki pozytywnie zakończonych poszukiwań urządzenia hydraulicznego pozwalającego na samoczynne ograniczenie strumienia przepływającej cieczy w zależności od jej prędkości napływu. Urządzenie takie jest wykorzystywane do samoczynnej regulacji ilości wody płynącej ze zbiorników wody (np. deszczowej) do cieków wodnych (rzek, kanałów itp.). Idea prezentowanego urządzenia została zgłoszona do opatentowania w Polskim Urzędzie Patentowym i po upływie kilku lat uzyskała ochronę Patentową. Przedstawione rozwiązanie poddano badaniom laboratoryjnym w trakcie których ustalono dla jednej typowielkości cechy konstrukcyjne w zależności od żądanych parametrów przepływowych. W trakcie badań laboratoryjnych potwierdzono założenia przepływowe prezentowanej konstrukcji.
EN
The paper concerns the flow reducers which allow the flow to be self-limited as the velocity of flow increases. This kind of reducers can be successfully applied to control water flow rate from reservoirs (for example rainwater reservoirs) to watercourse (rivers, channels etc.). The concept of such device has been submitted to the Polish Patent Office and now is under patent protection. The presented construction has been tested experimentally. As a result of the construction features, a function of demanded flow parameters has been determined. During experiments, the design assumptions have been proven. The numerical simulation of the flow through the reducer was also carried out. The pressure distributions, as well as force acting on the plate of the reducer, were determined.
5
EN
Design of supersonic HI rocket by the Rocketry Group of Students' Space Association (SR SKA) requires an analysis of thermal phenomena occurring in the elements particularly exposed to the high temperature gas. This paper contains a description of the methodology and the results of numerical simulation of heat transfer in the elements of the rocket head. The starting points were the flight conditions (3 characteristic points defined by altitude and Mach number) and independently calculated adiabatic temperature field of the gas. ANSYS Fluent code was used to determine the temperature field on the surface of the rocket. Computed cases were viscous and inviscid flow (for comparison). Based on the results formulated for the viscous case heat transfer boundary conditions, the numerical model and the thermophysical properties of materials were defined. The model was limited to a brass top part of the head and a part of a composite dome. Analytical and empirical method of "intermediate enthalpy" determined distribution of the heat transfer coefficient on the rocket surface. Then the transient heat transfer was calculated with the ANSYS system. It included the range from the rocket launch, moment of maximum Mach number to sufficient structure cooling. The results of the analyses were conclusions relevant to the further development work. Excessive heating of composite structures during the flight has been shown.
PL
Niniejszy artykuł zawiera opis metody oraz wyniki numerycznej symulacji wymiany ciepła w elementach głowicy rakiety. Punkt wyjścia stanowiły założone warunki lotu (3 punkty charakterystyczne określone przez wysokość i liczbę Macha) i wyznaczone niezależnie adiabatyczne pole temperatury gazu. Do wyznaczenia pola temperatur na powierzchni rakiety użyty został system ANSYS Fluent. Zostały' obliczone przypadki przepływał lepkiego i nielepkiego (dla porównania). Na podstawie wyników* dla przypadku lepkiego sformułowano warunki brzegowe wymiany ciepła, założenia modelu numerycznego. Model ograniczono do mosiężnej części noskowej i fragmentu kompozytowej kopułki. Metodą analityczno-empiryczną „średniej entalpii" (intermediate enthalpy) wyznaczono rozkład współczynnika przejmowania ciepła na powierzchni rakiety. Następnie dokonano obliczenia nieustalonej wymiany ciepła z wykorzystaniem systemu ANSYS. Obejmowały one zakres od startu rakiety, poprzez moment osiągnięcia maksymalnej liczby Macha, do wystarczającego schłodzenia konstrukcji. Efektem pracy było sformułowanie wniosków istotnych z punktu widzenia dalszych prac konstrukcyjnych, wykazano nadmierne ogrzewanie elementów kompozytowych w trakcie lotu.
PL
W artykule zaprezentowano rezultaty obliczeń numeryczną mechaniką płynów (CFD) charakterystyki zaworu kulowego. Porównano rezultaty obliczeń metodami równań domykających k- oraz z wykorzystaniem symulacji wielkich wirów LES. Przeprowadzono również analizę numeryczną problemu kawitacji w zaworze kulowym. Uzyskane charakterystyki pokrywają się z danymi eksperymentalnymi. Obliczenia numeryczne CFD mogą mieć zastosowanie w optymalizacji kształtek profilowych oraz redukcji zużycia erozyjnego elementów zaworu.
EN
In the paper there are presented the results of numerical calculations of the ball valve characteristics with use of the computational fluid dynamics. The calculations were carried out with use of the hypothesis of turbulent flows, the k- and simulations of large vor-texes (DS LES). The flow patterns in and downstream the ball valves with respect to different valve openings are visualized using the computational fluid mechanics Fluent commercial code. The CFD procedure was validated on the basis of the experimental data obtained by other authors. The valve applied in industry is shown in Fig. 1. The numerical grids were prepared in the Gambit preprocessor. Fig. 2 presents the view of the numerical grid for valve in the sample 10, 30, 75o angle closure for the valve whose main dimensions are given in Fig. 3. The calculation results are local physical flow fields inside the valve. For example, the velocity vector fields in the valve crossection are shown in Fig. 4. The CFD calculation results were used for calculating the valve characteristics. They are presented in Fig 5a. The figure shows the measured and calculated values of the flow resistance factor and cavity index compared with the measurement results obtained by other authors. Fig. 5b shows the comparison of the data from literature [13] with the results of numerical calculations using different turbulence models. In that figure there is presented the modelling of the single phase and two phase gas-liquid mixture. The obtained characteristics coincide with the experimental data which allows using that method for optimising the profile shapes when applying the numerical iterative correction. The calculation results for two-phase flows are shown in Fig. 6. In that picture there are presented the cavitation zones for which the volumetric concentration of water vapour is greater than 10%. The results of theoretical predictions were found to be in general agreement with those obtained from calculations within the acceptable level of accuracy.
7
Content available remote A Nonlinear Turbulence Model for Simulating a Flow in a Square Duct
EN
The aim of this paper is a priori evaluation and improvement of an explicit algebraic Reynolds stress model (EASM) which has been devised by Shih et al. (1995). This model which accounts for anisotropy is used to compute the turbulent flow through a square duct. It is based on a quadratic stress-strain relation which is obtained by applying the constraint of rapid distortion theory and the realizability constraint. The Reynolds number based on the averaged velocity and on the height of the duct is 4800. hi order to handle wall-proximity effects in the near-wall region, damping functions are implemented in the ShihM. Direct numerical simulation (DNS) of the Navier-Stokes equations is available for this case. The comparison of the ShihM results with these accurate simulations shows good agreements. The aspects of the state of such turbulent flow is summarized by the map of the second and third invariants of the Reynolds stress tensor.
EN
Fundamentals of the numerical modelling of multiphase flows have been presented. In particular, the porous body, vol-ume-of-fluid, Eulerian-Eulerian, Eulerian-Lagrangian models along with the population balance for the dispersed phase elements were described.
PL
Przedstawiono możliwości wykorzystania oprogramowania obliczeniowej mechaniki płynów (CFD) do symulacji przebiegu procesów znajdujących się w obszarze zainteresowania inżynierii chemicznej i procesowej. Rozważono układy z przepływem laminarnym i burzliwym, jedno i wielofazowe; przedyskutowano też sposoby opisu przebiegu reakcji chemicznych i precypitacji, oraz możliwości przewidywania jakości produktów symulowanych procesów. Omówiono uproszczenia stosowane w poszczególnych modelach i związane z tym ograniczenia stosowalności i dokładności modeli.
EN
The paper summarises the present abilities of the models of Computational Fluid Dynamics (CFD) to simulate the processes from the area of interest of chemical and process engineering. Laminar and turbulent flow processes carried out in the single- and multiphase systems are considered. Methods applied to model the course of chemical reactions and precipitation precresses are presented and discussed as well with particular emphasis on prediction of the product quality. Effects of simplifications applied in the CFD models on their accuracy and limitations in their applications are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.