This paper describes the results of an experimental study aimed at evaluating the biomechanical effects of working in a spatially restricted environment on manual lifting tasks. The main objective of the study is to estimate the biomechanical loading (in terms of peak compression and shear forces) on the lumbar spine for the selected combinations of limited headroom heights and twisting angles. A three-dimensional dynamic biomechanical model was utilized to assess peak compression and shear forces at the L5/S1 lumbosacral joint. The results indicated that by reducing the headroom height, the participants were forced to stand with their trunks fully flexed forward which, by increasing the mechanical disadvantage at the lumbosacral disc, increased the compression forces. Both compression and shear forces were affected by the increase in twisting angle. The greater the twisting angle, the higher the compression and shear forces. Regression models were developed and validated, which demonstrated high accuracy of predicting the psychophysical and biomechanical lifting capacities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.