Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  composite foundation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The mechanical properties of soil in soft soil area are poor, and the settlement of the underlying layer in the composite foundation accounts for a large proportion of the total settlement. At present, most of the research focuses on the settlement of the reinforced area, and the research on the settlement of the underlying layer is of great significance for the settlement of soft soil composite foundation. The differences in load transfer modes of soil and pile are analyzed, and based on the Boussinesq solution and Mindlin solution, a calculation method for the stress and settlement of the underlying layer in flexible and rigid pile composite foundation is proposed. The relative displacement of soil and pile in flexible pile composite foundation is small, and the negative friction can be ignored, but the influence of effective pile length should be considered. The relative displacement of soil and pile in rigid pile composite foundation is large, so the negative friction should be considered. Part of soil top stress is transmitted to the pile via negative friction, and then the pile axial force is transmitted back to the soil via positive friction. In addition to effective pile length, the change of stress transfer path caused by negative friction should also be considered in settlement calculation.
EN
At present, the cushion thickness of composite foundation under rigid base is mostly selected by the experience of the engineer, which is of great arbitrariness. In order to improve this problem, the optimum design method of cushion thickness is proposed by theoretical research. First, the stress diffusion line in the cushion is assumed to be a quadratic curve, and the critical diffusion thickness of the pile top stress is obtained. Then, by analyzing the relative deformation between soil and pile, pile top penetration into the critical cushion thickness is proposed. Finally, based on the relationship between stress ratio of pile to soil and cushion thickness, the calculation method of optimum cushion thickness is put forward. The application of engineering cases shows that the proposed method has better calculation results, which attests to the correctness of the method. The method can be used for the optimal design of cushion thickness of single-type-pile or multi-type-pile composite foundation.
EN
Ensuring the safety of existing structures is an important issue when planning and executing adjacent new foundation pit excavations. Hence, understanding the stress state conditions experienced by the soil element behind a retaining wall at a given location during different excavation stages has been a key observational modelling aspect of the performance of excavations. By establishing and carrying out sophisticated soil–structure interaction analyses, stress paths render clarity on soil deformation mechanism. On the other hand, column-type soft ground treatment has recently got exceeding attention and practical implementation. So, the soil stress–strain response to excavation-induced disturbances needs to be known as well. To this end, this paper discusses the stress change and redistribution phenomena in a treated ground based on 3D numerical analyses. The simulation was verified against results from a 1 g indoor experimental test conducted on composite foundation reinforced with long and short cement–fly ash–gravel (CFG) pile adjacent to a moving rigid retaining wall. It was observed that the stress path for each monitoring point in the shallow depth undergoes a process of stress unloading at various dropping amounts of principal stress components in a complex manner. The closer the soil element is to the wall, the more it experiences a change in principal stress components as the wall movement progresses; also, the induced stress disturbance weakens significantly as the observation point becomes farther away from the wall. Accordingly, the overall vertical load-sharing percentage of the upper soil reduces proportionally.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.