Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  combined wave-current flow
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of pier scour in coastal environments severely affects the bridge’s stability. Therefore, estimating pier scour around the vertical cylinder is important for the safety of the bridge structure. The estimation of pier scour depth in combined wave-current conditions has become a challenging task for researchers in recent times. The existing empirical formulations that calculate scour in the combined action of current and wave are scarce and may not always provide accurate results. Machine-learning (ML) techniques have become increasingly popular for their prediction capabilities in the fields of hydraulics and coastal engineering in recent years. Therefore, the present study aims to develop Boosting ML techniques (i.e., AdaBoost, XGBoost, CatBoost, and LightGBM) of ML to estimate pier scour in combined wave-current conditions. The non-dimensional parameters, such as Keulegan-Carpenter (KC) number, Relative flow velocity (Ucw), and Absolute Froude number (Fra), are used as input parameters, whereas scour depth (S/D) is the output parameter in Boosting ML models. The sensitivity analysis has been performed to demonstrate the relative importance of the input parameter on S/D. The performance metrics show that the XGBoost model with the input combination of Fra, KC, and Ucw provides the highest accuracy of 92.47% and outperforms SVM, CatBoost, AdaBoost, and LightGBM models. The XGBoost model also outperforms the existing empirical formulations. Therefore, it can be concluded that the XGBoost techniques can be used as a reliable, accurate, and alternative tool to estimate pier scour depth in the combined action of current and wave.
EN
This article presents a review of the state of research on bridge pier scour under combined wave–current flow. The hydrodynamics and scour around the bridge pier under combined wave–current flow have been explained in detail based on the information available in the literature. The impact of relative flow velocity (Ucw), Keulegan–Carpenter number (KC), absolute Reynolds number (Rea), and sediment characteristics on bridge pier scour under combined wave–current flow is presented. This study includes physical modelling of scour with various formulations to predict scour depth and calculation procedures related to scour under combined wave–current flow in the coastal environment. In addition, this study also provides the development of numerical models to investigate bridge pier scour in detail. In the end, future prospects of hydrodynamics and scour around the bridge pier under combined wave–current flow are delineated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.