Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  collapsibility
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The heat-cured core-making process has been applied for over 60 years to produce molds and cores for different types of castings. The following technologies can be classified into the terminology of “heat-cured coremaking process”: croning-, hot-box -, and warm-box process. The latest technology provides good workability of core mixture, good strength properties, dimensional stability, and good knockout performance of the sand cores. Despite all its advantages, the warm-box technology is less widespread in foundries due to the cost of the high quality thermosetting resin and the maintenance cost of the core box. In this study, the influence of the acid hardener content on the hardening characteristics (bending strength), collapsibility, and the benchlife of the warm-box sand cores were investigated. From the results, it can be said, that within the investigated composition range, increasing the acid hardener content will improve the bending strength of the sand cores. The increased acid hardener content results in higher thermal stability at the beginning of the thermal exposure, and smaller residual bending strength after 15 minutes of thermal loading. The acid hardener level has little effect on the benchlife of the warm-box sand cores, although the sand core mixture is very sensitive to the combined effect of the sand temperature and dwelling time.
EN
A wide variety of water-soluble cores are widely used in hollow composite castings with internal cavities, curved channels, and undercuts. Among them, the cores made by adding binders of inorganic salts in the form of aqueous solutions have excellent solubility in water. However, excellent collapsibility is often accompanied by poor moisture absorption resistance. In this study, a water-soluble core with moderate strength and moisture absorption resistance was prepared by hot pressing and sintering the core sand mixture of sand, bentonite, and composite salts, and a tee tube specimen was cast. The experimental results showed that the cores with KCl-K2CO3 as binder could obtain strength of more than 0.9 MPa and still maintain 0.3 MPa at 80±5% relative humidity for 6 hours; the subsequent sintering process can significantly improve the resistance to moisture absorption of the hot pressed cores (0.6 MPa after 24 hours of storage at 85±5% relative humidity); the water-soluble core prepared by the post-treatment can be used to cast tee pipe castings with a smooth inner surface and no porosity defects, and it is easy to remove the core.
3
EN
There are mainly two different ways of producing sand cores in the industry. The most used is the shooting moulding process. A mixture of sand and binder is injected by compressed air into a cavity (core), where it is then thermally or chemically cured. Another relatively new method of manufacturing cores is the use of 3D printing. The principle is based on the method of local curing of the sand bed. The ability to destroy sand cores after casting can be evaluated by means of tests that are carried out directly on the test core. In most cases, the core is thermally degraded and the mechanical properties before and after thermal exposure are measured. Another possible way to determine the collapsibility of core mixtures can be performed on test castings, where a specific casting is designed for different binder systems. The residual strength is measured by subsequent shake-out or knock-out tests. In this paper, attention will be paid to the collapsibility of core mixtures in aluminium castings.
EN
Foundation of the buildings on the loessial soil is often associated only with difficulties resulting from the possibility of the collapse of the ground. For these reason, loess is too often unfairly disqualified as the construction subsoil in spite of its good strength and strain parameters. Thanks to continuous development of research and publications of the results, reliable data regarding loess are spread and, as a consequence, loess becomes more and more common soil used in the geotechnical engineering. Loess collapsibility has been studied since the middle of the 20th century, nevertheless, only the computer techniques and specialist laboratory and microstructural tests, that have been developed from the end of last century, helped us to find an answer to the important questions regarding the occurrence of this phenomenon. Detailed mechanisms that cause sudden loess volumetric reduction due to humidity and load, and the elements that affects the collapsibility are still studied. Furthermore, varied technics are researched, including in-situ tests, which allow estimating the risk of collapse, as well as the methods of its elimination. The aim of this paper is to systematize the directions of current studies of European loess collapsibility and to indicate their most significant results. The review was made on the basis of the scientific publications published in the Polish and international journals as well as the Journal Citation Reports (JCR) Web of Science database.
EN
This study shows the results of the investigation of the strength performance, and residual strength of a single component inorganic binder system Cast Clean S27®. The study was conducted using three different foundry sand sources in South Africa. Sample A is an alluvial coastal sample, sample B is an alluvial riverbed sample and Sample C is a blasted sample from a consolidated quartzite rock. The binder was also cured using three different curing mechanisms. The aim of the investigation was to determine the variation of strength performance and residual strength between the different South African sand sources based upon the physical and chemical properties of the sand sources. The moulding sand was prepared using three possible curing mechanisms which are carbon dioxide curing, ester curing and heat curing. The strength measurements were determined by bending strength. Sample A and sample C sand had good strength development. Sample B sand had inferior strength development and excellent high temperature residual strength. The study showed that the single component inorganic binders have good strength development and low residual strength. The silica sand properties have major contributing factors on both strength development and residual strength. The degree of influence of silica sand properties on strength performance and residual strength is dependent on the time of curing and method of curing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.