Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  collagen type I
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Poly(L-lactide-co-glycolide) (PLGA) scaffolds of pore size within the range of 250–320 μm were produced by solvent casting/ porogen leaching method. Afterwards, they were modified through adsorption of collagen type I and incubation in simulated body fluid (SBF) to allow deposition of hydroxyapatite (HAp). The wettability of the scaffolds was measured by sessile drop test. Scanning electron microscopy (SEM) evaluation and energy dispersive X-ray analysis (EDX) were also performed. SEM evaluation and EDX analysis depicted the presence of HAp deposits and a collagen layer on the pore walls on the surface and in the bulk of the scaffolds. Wettability and water droplets penetration time within the scaffolds decreased considerably after applying modifications. Human mesenchymal stem cells (hMSC) were cultured on the scaffolds for 28 days and cell morphology, proliferation and differentiation as well as calcium deposition were evaluated. Lactate dehydrogenase (LDH) activity results revealed that cells cultured on tissue culture polystyrene (TCPS) exhibited high proliferation capacity. Cell growth on the scaffolds was slower in comparison to TCPS and did not depend on modification applied. On the other hand, osteogenic differentiation of hMSC as confirmed by alkaline phosphatase (ALP) activity and mineralization results was enhanced on the scaffolds modified with hydroxyapatite and collagen.
EN
Collagen type I and glycosaminoglycans (GAGs) were immobilized on the surfaces of two types of porous biodegradable poly(L-lactide-co-glycolide) (PLGA) scaffolds with pore size in the range of 250-320 µm and 400-600 µm. Two methods of coating were evaluated differing in the way of how the fibrillogenesis solution was introduced into the pores. The distribution of the immunostained collagen in the volume of the scaffolds was analysed with a laser confocal microscope (LSM). The total amount of collagen and GAGs was measured by Sirius Red and Toluidine Blue assays, respectively. The potential of the scaffolds for cell colonization and differentiation was tested in a dynamic cell culture system using human osteosarcoma cells (SAOS-2). The proliferation of SAOS-2 cells was measured by determining the DNA content on days 2 and 7, while differentiation was analyzed by Calcium- and Phosphate-Assays on days 7 and 14. Differentiation of cells was improved by increasing the pore diameter of the scaffolds, and artificial extracellular matrix (aECM) coatings had an additional positive effect for the scaffolds of both pore sizes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.