Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  coastal wetlands
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study mainly focused on the current situation of antibiotic pollution in coastal wetlands by screening for four common antibiotics (norfloxacin – NOR, ofloxacin – OFL, azithromycin – AZM, and roxithromycin – RXM) and two coastal wetland plants (Suaeda and Nelumbo nucifera), to determine the removal of antibiotic pollution by phytoremediation technology and its mechanism. We aimed to provide ideas for the remediation of antibiotics in coastal wetlands and their mechanisms of action in the context of intensive farming. The results showed that both plants had remediation effects on all four antibiotics, the phytoremediation of NOR and OFL was particularly significant, and the remediation effect of N. nucifera was better than that of Suaeda . The removal rates of the four antibiotics by Suaeda and N. nucifera at low antibiotic concentrations (10–25 μg/L) reached 48.9–100% and 77.3–100%, respectively. The removal rates of the four antibiotics at high antibiotic concentrations (50–200 μg/L) reached 7.5–73.2% and 22–84.6%, respectively. Moreover, AZM was only detected in trace amounts in the roots of N. nucifera, and RXM was not detected in either plant body.
EN
In the present work, we assessed the carbon sequestration capacity of mangrove forests (Avicennia marina) in relation to nutrient availability and salinity gradients along the Red Sea coast of Saudi Arabia. This was achieved through estimating the sediment bulk density (SBD), sediment organic carbon (SOC) concentration, SOC density, SOC pool, carbon sequestration rate (CSR) and carbon sequestration potential (CSP). The present study was conducted at 3 locations (northern, middle and southern), using 7 sites and 21 stands of mangrove forests (A. marina) along ∼1134 km of the Red Sea coastline of Saudi Arabia (from Duba in the north to Jazan in the south), all of which are in an arid climate. The correlation coefficients between the water characteristics and the first two Canonical Correspondence Analysis (CCA) axes indicated that the separation of the sediment parameters along the first axis were positively influenced by TDS (total dissolved solids) and EC (electric conductivity) and were negatively influenced by total N and total P. On the other hand, the second axis was negatively correlated with total N, total P, EC and TDS. The SOC pools at the northern (10.5 kg C m−2) and southern locations (10.4 kg C m−2) were significantly higher than the SOC pool at the middle location (6.7 kg C m−2). In addition, the average CSR of the northern (5.9 g C m−2 yr−1) and southern locations (6.0 g C m−2 yr−1) were significantly higher than they were in the middle location (5.0 g C m−2 yr−1).
EN
Coastal wetlands are ecologically important all over the world, and they are relatively unstable with dramatic changes in aboveground vegetation. However, it is still unclear how the aboveground vegetation changes will influence the functioning of coastal wetland ecosystems, especially the decomposition processes. Here, we carried out a cotton strip experiment to examine the effects of Suaeda salsa community on the soil properties and the associated cellulose decomposition rates in the coastal wetlands of Liao River delta (NE China). Our results showed that S. salsa community significantly affected the contents of soil C, N, P, base cations, organic matter and the soil electrical conductivity (EC), and such effects might vary among different types or densities of aboveground vegetation. The soil cellulose decomposition rate (in terms of cotton strip tensile strength loss, CTSL) was slowed down when aboveground S. salsa communities are experiencing degradation or have been totally replaced by Phragmites australis communities. Moreover, there were positive partial correlations between soil N and CTSL, and between soil EC and CTSL, but a negative partial correlation between soil C and CTSL. Our results emphasized the importance of S. salsa community in determining the soil cellulose decomposition rate in this coastal region. The results suggest that vegetation degradation in coastal wetlands might lead to various changes in soil properties and hence affect other aspects of ecosystem functioning and services, especially nutrient cycling.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.