Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  co-generation units
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Description of Measurements on Biogas Stations
EN
This paper focuses mainly on performance analysis for three biogas stations situated within the territory of the Czech Republic. This paper contains basic details of the individual biogas stations as well as description of their types. It also refers to the general description of the measurement gauge involved, with specifications of its potential use. The final part of this paper deals with the analysis of course data obtained, with special regard to voltage, current, active power and reactive power data.
EN
Projected increases in the cost of conventional fossil energy sources and greenhouse gas emissions caps are among the key drivers for the utilization of various gaseous fuels prepared from biomass in internal combustion engines, primarily in cogeneration units. Due to the low energy content and other poor qualities of many such fuels, they are often intended to be co-fired with diesel fuel, or used in blends with natural gas or other gaseous fuels. Variations in the composition of the biogas, limited capabilities of gas mixing and metering devices, and other factors create challenges in determining the intake charge composition, so that optimal mixture of air and multiple fuels can be maintained. In this study, an experimental device for mixing of two gaseous fuels was tested, with various gases, on a bus engine modified to run on experimental gaseous fuel blends. To evaluate the performance of the mixing device, the composition of the mixture of two fuel gases was continuously analyzed by an inexpensive NDIR ,”garage-grade” exhaust gas analyzer. The focus of this paper is on the adaptation of the analyzer for this purpose, including calibration and linearization techniques, its verification, and performance. Preliminary results show that this analyzer, commonly used for automobile inspection and maintenance purposes, can serve, albeit with precautions and limitations, as a relatively simple tool for field measurements of the composition of a fuel gas mixture, both raw and mixed with air.
EN
Projected increases in the cost of conventional fossil energy sources and greenhouse gas emissions caps are among the key drivers for the utilization of various gaseous fuels prepared from biomass in internal combustion engines, primarily in cogeneration units. Due to the low energy content and other poor qualities of many such fuels, they are often intended to be co-fired with diesel fuel, or used in blends with natural gas or other gaseous fuels. Variations in the composition of the biogas, limited capabilities of gas mixing and metering devices, and other factors create challenges in determining the intake charge composition, so that optimal mixture of air and multiple fuels can be maintained. In this study, an experimental device for mixing of two gaseous fuels was tested, with various gases, on a bus engine modified to run on experimental gaseous fuel blends. To evaluate the performance of the mixing device, the composition of the mixture of two fuel gases was continuously analyzed by an inexpensive NDIR ",garage-grade" exhaust gas analyzer. The focus of this paper is on the adaptation of the analyzer for this purpose, including calibration and linearization techniques, its verification, and performance. Preliminary results show that this analyzer, commonly used for automobile inspection and maintenance purposes, can serve, albeit with precautions and limitations, as a relatively simple tool for field measurements of the composition of a fuel gas mixture, both raw and mixed with air.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.