Przedstawiono innowacyjny sposób wytwarzania matryc kuziennych, wdrażany w kuźni przemysłowej. Robocze powierzchnie rdzenia matrycy wykonanego ze stali konstrukcyjnej napawano materiałami odpornymi na destrukcyjne oddziaływanie procesu technologicznego kucia. Opracowano i wdrożono specjalny program komputerowy dla robota spawalniczego, który zapewnia precyzję napawania matrycy. Wprowadzony innowacyjny sposób wytwarzania matryc kuźniczych w pełni zapewnia wymaganą jakość odkuwek przy zachowaniu stałych parametrów matrycy w okresie eksploatacji.
EN
An innovative method of producing forging dies, implemented in an industrial forge, was presented. The working surfaces of the die core made of structural steel were padded with materials resistant to the destructive impact of the technological forging process. A special computer program has been developed and implemented for the welding robot that ensures the precision of the matrix welding. The introduced innovative method of producing forging dies fully ensures the required quality of forgings while maintaining constant parameters of the matrix during the operation period.
Przedstawiono parametry procesu technologicznego wytwarzania matryc kuziennych. Przeanalizowano wpływ czynników oddziaływujących bezpośrednio na trwałość matryc. Scharakteryzowano kryteria doboru materiałów na podłoże matrycy (rdzeń) i napoinę w aspekcie dostępności rynkowej w celu wykonania badań weryfikujących ich parametry technologiczne. W oparciu o teorię podobieństwa określono wartości strumieni cieplnych zapewniających stabilizację temperatury matrycy podczas procesu napawania.
EN
Parameters of the technological process of manufacturing forging closed - dies are presented. The influence of factors directly affecting the durability of the closed - dies was analyzed. The criteria for the selection of materials for the closed - dies substrate (core) and the padding weld were characterized in terms of market availability, in order to perform tests verifying their technological parameters. Based on the theory of similarity, the values of thermal fluxes ensuring the stabilization of the closed - dies temperature during the padding process were determined.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Przedstawiono wyniki badań materiałów otrzymanych w technologii łączącej procesy przeróbki plastycznej oraz metalurgii proszków. Półwyroby przeznaczone do wyciskania wytworzono w procesie zagęszczania na gorąco w matrycach zamkniętych stopowego proszku Al17Si5Fe3Cu1,1MgO,6Zr oraz mieszaniny tego proszku i cząstek węglika krzemu w ilości 10% objętościowych. Zagęszczanie prowadzono w temperaturze 530°C, stosując nacisk jednostkowy 300 MPa przy czasie 7 min jego oddziaływania na materiał. Uzyskane w ten sposób półwyroby wyciskano w temperaturze 530°C, ze współczynnikiem wyciskania [lambda] = 13,7, przy prędkości trawersy prasy 0,1 mm/s. Zarejestrowano wielkość sił podczas realizacji procesu wyciskania w funkcji przemieszczenia stempla (rys. 2). Badano wpływ składu chemicznego na względną gęstość (rys. 3) i twardość (rys. 4) wstępnie zagęszczonych na gorąco półwyrobów oraz po ich wyciskaniu. Określono także wytrzymałość na zginanie (rys. 5) i zużycie ścierne (rys. 6) wyciskanych tworzyw. Ocenie poddano powierzchnie przełomów wyciskanych materiałów (rys. 8), powstałe w próbie zginania w temperaturze otoczenia oraz ich struktury (rys. 7). Gęstości półwyrobów otrzymanych w procesie zagęszczania w temperaturze 530°C w matrycach zamkniętych stopowego proszku AI17Si5Fe3Cu1,1MgO,6Zr odpowiadają gęstości względnej litego materiału. Wyciskanie w temperaturze 530°C tych półwyrobów powoduje przetworzenie materiału bez zmiany jego względnej gęstości. Wprowadzenie 10% obj. cząstek węglika krzemu spowodowało spadek gęstości kompozytu 0,2-0,3%. W efekcie obecności fazy umacniającej w osnowie nastąpił wzrost twardości materiału. Po wyciskaniu w temperaturze 530°C była ona niższa niż półwyrobów o tym samym składzie chemicznym, otrzymanych w procesie zagęszczania na gorąco. Cząstki węglika krzemu wprowadzone do osnowy spowodowały podwyższenie wytrzymałości na ściskanie oraz zmniejszenie zużycia ściernego materiałów kształtowanych w procesie wyciskania na gorąco. Powierzchnie zniszczenia tych materiałów mają charakter kruchych przełomów. Obserwacje struktur materiałów powstałych po wyciskaniu na gorąco nie wykazały obecności porów, co potwierdza jakościowo wyniki uzyskane podczas badań gęstości (rys. 7).
EN
The work presents the results of research of the materials obtained from powder using the technology that combined metal forming and powder metallurgy. Semi-finished products designed for the extrusion were produced by hot consolidation in closed-die the Al17Si5Fe3Cu1,1MgO.6Zr powder and mixture of this powder and 10 vol.% of silicon carbide particles. Consolidation process was performed at 530°C, at unit pressure 300 MPa and with stamp pressing time of 7 minutes. The semi-finished products obtained in this way were extruded at 530°C, at a traverse speed of 0.1 mm/s and at extrusion ratio [lambda]= 13.7. The values of the forces which appear during extrusion in 530°C as a function of punch dispalcement were registered. The relative density (Fig. 3) and hardness (Fig. 4) for materials after hot consolidation and extrusion. The compression strength at room temperature (Fig. 5) and the abrasive wear (Fig. 6) for the extruded products were investigated. The fracture surfaces in a bending test at room temperature (Fig. 8) and the structures (Fig. 7) of hot extruded materials were estimated. Extrusion at 530°C caused material processing with invariable of relative density value. The addition of silicon carbide particles causes only insignificant drop in density of composite materials, in a range of 0.2-0.3%. Introducing the reinforced phase in the matrix leads to the increase of product hardness The hardness of materials obtained by hot extrusion was lower than for semi-products by the some chemical composition, after hot consolidation in closed-die. In the case of the materials manufactured by hot extrusion, addition 10% of silicon carbide particles leads to the increase of the compression strength and abrasive wear results. The destruction surface of the materials, obtained by hot extrusion arose as a result of brittle cracking. Observation of the hot extruded products microstructures was confirmed by qualitative density measurements results (Fig. 7).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.