Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  closed vessel tests
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
At the end of 2016, the Scientific-Industrial Consortium (Mesko S.A., Polska Grupa Zbrojeniowa S.A., Warsaw University of Technology, Military University of Technology, Military Institute of Armament Technology) set up an R&D project to develop and manufacture a demonstrator of new generation critical components for a 120 mm Polish tank munition. The critical elements for the project included a combustible charge case, an insensitive propellant and tungsten rods for sub-calibre projectiles. The task of the Military University of Technology was to develop the basic technology and fabricate insensitive LOVA propellants on a laboratory scale (research team of the Faculty of Advanced Technologies and Chemistry) and carry out the ballistic and simulation tests of a 120 mm tank gun using ammunition incorporating the developed LOVA propellant (research team of the Faculty of Mechatronics, Armamen and Aerospace). The article also includes an analysis of available literature on energy and ballistic properties of LOVA and JA-2 propellants. Closed-vessel tests of JA-2 propellant (manufactured by Nitrochemie AG, designation LO5460) were also carried out. The tests were carried out in a 200 cm3 closed vessel. Based on the propellant gas pressure/time records, the propellant force and co-volume, and dynamic vivacity curves were determined. A linear combustion rate coefficient was determined using the measured results of the propellant grain geometry. The authors’ own data enabled the carrying out of preliminary simulation tests of the 120 mm propellant system.
PL
Pod koniec 2016 r. Konsorcjum Naukowo-Przemysłowe (Mesko S.A., Polska Grupa Zbrojeniowa S.A., Politechnika Warszawska, Wojskowa Akademia Techniczna, Wojskowy Instytut Techniczny Uzbrojenia) rozpoczęło realizację projektu badawczo-rozwojowego, którego celem jest opracowanie i wykonanie demonstratorów technologii krytycznych elementów do nowej generacji, polskiej amunicji czołgowej 120 mm. Do elementów krytycznych w tym projekcie zaliczono samospalającą się łuskę, małowrażliwy materiał miotający oraz pręty wolframowe do pocisku podkalibrowego. Zadaniem Wojskowej Akademii Technicznej jest opracowanie podstaw technologii i wykonanie w skali laboratoryjnej małowrażliwego materiału miotającego typu LOVA (zespół badawczy Wydziału Nowych Technologii i Chemii) oraz przeprowadzenia badań balistycznych i badań symulacyjnych zjawiska strzału w 120 mm czołgowym układzie miotającym z wykorzystaniem amunicji elaborowanej opracowanym prochem LOVA (zespół badawczy Wydziału Mechatroniki, Uzbrojenia i Lotnictwa). W niniejszym artykule zawarto analizy literaturowe dotyczące właściwości energetyczno-balistycznych prochów typu LOVA oraz prochu JA-2. Ponadto przeprowadzono własne badania pirostatyczne prochu JA-2 (produkcji Nitrochemie AG) oznaczonego jako LO5460. Badania te przeprowadzono w komorze manometrycznej o pojemności 200 cm3. Na podstawie zarejestrowanego (w czasie) ciśnienia gazów prochowych określono siłę prochu, kowolumen gazów prochowych oraz krzywe żywości dynamicznej. Wykorzystując wyniki pomiarów geometrii ziaren prochu określono współczynnik liniowej szybkości spalania. Wyniki badań własnych pozwoliły na przeprowadzenie wstępnych badań symulacyjnych zjawiska strzału w 120 mm układzie miotającym.
EN
One direction of modern artillery ammunition development is to reduce its vulnerability to the effects of mechanical and thermal factors during transport, storage and operation. For LOVA, the reduced vulnerability of propellant explosives intended for loading into this ammunition is usually connected with a higher thermal ignition impulse threshold and reduced burning rate under low propellant gas pressure. Since 2016, work has been under way at the Military University of Technology (Warsaw, Poland), intended to develop a Polish low-vulnerability gun propellant for 120 mm tank ammunition. It was established during the initial stage of research and analysis, that the JA-2 gun propellant (more specifically, its energy and ballistics characteristics and geometrical dimensions of grains) will be the reference propellant for the low-vulnerability propellant in development. To this end, the authors performed closed vessel tests with JA-2 propellant (with seven-perforated grains designated LO5460). This paper contains comparative (with the JA-2 propellant) results of closed vessel tests of several propellant blends developed by the MUT Faculty of New Technologies and Chemistry research team. Closed vessel tests of these propellant blends were performed in the Ballistics Laboratory of the MUT Institute of Armament Technology using a manometric chamber with a volume W₀ = 200 cm³. Experimental tests and theoretical analyses were performed based on provisions of the standardisation agreement STANAG 4115 [6], American military standard MIL-STD 286C [7] and original test procedures developed based on [8, 9]. The tests focused mainly on the issue of correlation between the chemical composition of the given propellant blend with the expected values of energy and ballistics characteristics in connection with the required shape of propellant grains.
PL
Jednym z kierunków rozwoju współczesnej amunicji artyleryjskiej jest zmniejszenie jej wrażliwości na działanie czynników mechanicznych i termicznych podczas transportu, przechowywania i eksploatacji. W przypadku amunicji LOVA zmniejszona wrażliwość wybuchowych materiałów miotających przeznaczonych do elaboracji tej amunicji jest z reguły powiązana z wyższą wartością progową cieplnego impulsu zapłonowego i zmniejszeniem szybkości spalania przy niskim ciśnieniu gazów prochowych. Od 2016 r. w Wojskowej Akademii Technicznej trwają prace nad opracowaniem polskiego małowrażliwego materiału miotającego do 120 mm amunicji czołgowej. Na wstępnym etapie badań i analiz przyjęto, że proch JA-2 (a właściwie jego charakterystyki energetyczno-balistyczne oraz kształt i wymiary geometryczne ziaren) będzie prochem referencyjnym w stosunku do opracowywanego prochu małowrażliwego. W tym celu przeprowadzono własne badania pirostatyczne prochu JA-2 (z ziarnami siedmiokanalikowymi o symbolu LO5460). Artykuł zawiera porównawcze (z prochem JA-2) wyniki badań pirostatycznych kilku kompozycji prochowych, opracowanych przez zespół badawczy Wydziału Nowych Technologii i Chemii WAT. Badania pirostatyczne tych kompozycji prochowych przeprowadzono w Laboratorium Balistyki Instytutu Techniki Uzbrojenia WAT z wykorzystaniem komory manometrycznej o objętości W₀ = 200 cm³. Badania doświadczalne i analizy teoretyczne realizowano w oparciu o zapisy porozumienia standaryzacyjnego STANAG 4115 [6], amerykańskiej normy MIL-STD 286C [7] oraz własne procedury badawcze opracowane na podstawie prac [8, 9]. W badaniach skoncentrowano się głównie na kwestii korelacji pomiędzy składem chemicznym badanej kompozycji prochowej a oczekiwanymi wartościami charakterystyk energetyczno-balistycznych, w powiązaniu z wymaganym kształtem ziaren prochowych.
PL
Pod koniec 2016 r. Konsorcjum Naukowo-Przemysłowe (Mesko S.A., Polska Grupa Zbrojeniowa S.A., Politechnika Warszawska, Wojskowa Akademia Techniczna, Wojskowy Instytut Techniczny Uzbrojenia) rozpoczęło realizację projektu badawczo-rozwojowego, którego celem jest opracowanie i wykonanie demonstratorów technologii krytycznych elementów do nowej generacji, polskiej amunicji czołgowej 120 mm. Do elementów krytycznych w tym projekcie zaliczono samospalającą się łuskę, małowrażliwy materiał miotający oraz pręty wolframowe do pocisku podkalibrowego. Zadaniem Wojskowej Akademii Technicznej jest opracowanie podstaw technologii i wykonanie w skali laboratoryjnej małowrażliwego materiału miotającego typu LOVA (zespół badawczy Wydziału Nowych Technologii i Chemii) oraz przeprowadzenia badań balistycznych i badań symulacyjnych zjawiska strzału w 120 mm czołgowym układzie miotającym z wykorzystaniem amunicji elaborowanej opracowanym prochem LOVA (zespół badawczy Wydziału Mechatroniki i Lotnictwa). W niniejszym artykule zawarto analizy literaturowe dotyczące właściwości energetyczno-balistycznych prochów typu LOVA oraz prochu JA-2. Ponadto przeprowadzono własne badania pirostatyczne prochu JA-2 (produkcji Nitrochemie AG) oznaczonego jako LO5460. Badania te przeprowadzono w komorze manometrycznej o pojemności 200 cm3. Na podstawie zarejestrowanego (w czasie) ciśnienia gazów prochowych określono siłę prochu, kowolumen gazów prochowych oraz krzywe żywości dynamicznej. Wykorzystując wyniki pomiarów geometrii ziaren prochu określono współczynnik liniowej szybkości spalania. Wyniki badań własnych pozwoliły na przeprowadzenie wstępnych badań symulacyjnych zjawiska strzału w 120 mm układzie miotającym.
EN
At the end of 2016, the Polish Scientific-Industrial Consortium (Mesko S.A., Polish Armed Forces Group, Warsaw University of Technology, Military University of Technology, Military Institute of Armament Technology) started a R&D project aimed at developing and implementing technology demonstrators of critical elements for the new generation of 120 mm Polish tank ammunition. Critical elements in this project are: self-burning cartridge case, insensitive propellant and tungsten rods for projectile. The task of the Military University of Technology is to develop technology and perform laboratory-scale LOVA propellant and carry out ballistic research and simulation studies of a shot in a 120 mm tank barrel system using developed ammunition. This paper contains comparative theoretical analysis of the energetic and ballistic properties of LOVA and JA-2 gun propellants. In addition, own experimental closed vessel tests of JA-2 gun propellant designated LO5460 were performed. Closed vessel test were carried out in manometric chamber having the volume of 200 cm3. Based on the recorded pressure changes, the force and co-volume were calculated and the dynamic vivacity curves were determined. Using the results of measurements of propellant grains geometry, the linear burning rate was determined. The results of our own research allowed us to conduct preliminary simulations of the shooting phenomenon in a 120 mm gun propulsion system.
EN
The effect of the initial temperature on the mechanical properties of spherical single base gun propellant was investigated by means of a compression test, which consisted of compression of a propellant bed conditioned at various initial temperatures. Following this mechanical treatment, the pressed grains (after thermal conditioning at ambient temperature) were tested in a closed vessel. The results from the combination of compression and closed vessel tests supported the assumption that there are two phenomena occurring inside the cartridge at low temperatures which compensate each other; the first is a decrease in the burning rate as the initial temperature is decreased, and the second is grain fracturing occurring on ignition. Additionally, a specific parameter, the specific surface area, turns out to be an appropriate parameter for quantifying the mechanical damage to the propellant grain resulting from the compression test. Tests on the aged propellant have also been conducted.
EN
In our previous investigation, we measured the global temperature sensitivity coefficient of a deterred spherical single base gun propellant following an experimental procedure that did not allows us to determine the local temperature sensitivity coefficients of the deterred and undeterred parts of the investigated propellant. In this paper, we propose an experimental methodology to measure the local temperature sensitivity coefficients of both parts of the spherical deterred gun propellant. This methodology can be summarized as follows: Firstly, we separated the ranges of pressure where the combustion of the deterred and the undeterred parts of the spherical propellant occurs by means of infrared (IR) microscopy measurements. Then the burning rate of the propellant as a function of pressure was calculated according to STANAG 4115 at different initial temperatures. Finally, we determined the local temperature sensitivity coefficients of each part of the spherical propellant.
EN
One of the objectives of gun propellant research is to develop green formulations of gunpowder that should be less temperature sensitive than the current gun propellant. The temperature sensitivity of these new green formulations of the propellant should be measured to identify the less temperature sensitive green formulations. However, there are deficiencies in the methodologies for the measurement of the temperature sensitivity of gun propellants. Therefore, the aim of this investigation was to fill the gap by establishing a method for the measurement of the temperature sensitivity of deterred gun propellants by closed vessel tests. The temperature sensitivity of the burning rate of ball propellants and the temperature coefficients of gun performance were determined using closed vessel tests and ballistic firing, respectively. Specific definitions of temperature sensitivity and temperature coefficients were evaluated. The relation between these parameters has never been explicitly investigated previously. Assessing the temperature sensitivity of propellants by closed vessel tests is of added value to the range of ballistic tests if the results of these tests can be well correlated to the results of ballistic firings. Therefore, a comparison between both parameters was made. A correspondence has been observed between the temperature sensitivity of the propellant burning rate, as obtained from closed vessel tests, and the temperature coefficients as obtained from ballistic firings.
EN
Contemporary development of new types of ammunition is concentrated to improve the energetic characteristics, chemical stability and operational safety of propellants. Response to this requests are low vulnerability (LOVA) propellants. Previous closed vessel investigations indicated that classical primers (electric or percussion with black powder bedding) when used with LOVA propellants causes unstable burning, defagration or even lack of ignition. Plasma generators, which create higher energy fux, temperature and make possible to control combustion process are possible solution of this problem. Assuming that in the future Poland may be a manufacturer of LOVA propellants, Military University of Technology began to develop of new closed vessel equipped with capillary plasma generator (CPG) - the new method of low vulnerability propellants ignition. In CPG systems plasma generation is obtained by discharge of high power capacitors through low diameter conductors in polyethylene coating (mainly cooper, aluminium and tungsten wires), causing them to explode (or other metallic vapour generating device). After wire explosion plasma causes burning of polyethylene, giving additional energy to plasma cloud. Plasma is vented to vessel causing high energy and heat fux through radiation and metallic vapour condensation. CPG is one of the most reliable ignition sources which make possible a reduction of temperature gradient effect and control combustion process. In this paper, different solutions of plasma ignition devices are briefy described. Furthermore, in the paper are presented: idea of our capillary plasma generator, preliminary experimental results (high speed camera pictures) of free air plasma jet propagation and comparison of pictures the impulse effects of plasma and black powder ignition.
PL
Badania pirostatyczne mające na celu m.in. porównanie charakterystyk energetycznobalistycznych stałych materiałów miotających (prochów) o różnym składzie chemicznym masy prochowej i kształcie ziaren prochowych bazują na założeniach geometrycznego modelu spalania, a warunki badań (określone normatywnie m.in. w STANAG 4115, MIL STD 286) sprowadzają się w zasadzie do: 1. zachowania identycznej gęstości ładowania, co oznacza spalanie tej samej masy różnych prochów w komorze manometrycznej o ściśle określonej objętości; 2. przyjęcia jednej określonej naważki materiału zapłonowego (proch czarny) do rozpalania różnych prochów. Tymczasem cieplny model zapłonu zakładający, że temperatura na powierzchni ziarna powinna być większa od temperatury zapłonu prochu oraz, że gradient temperatury w warstwie przypowierzchniowej ziarna powinien być równy gradientowi jaki występuje podczas spalania ustalonego pod danym ciśnieniem, zmusza do krytycznego spojrzenia na dotychczas obowiązujący sposób realizacji zapłonu. W artykule zaprezentowano porównanie wyników obliczeń szybkości spalania jednobazowego prochu jednokanalikowego o różnej wielkości ziaren prochowych w kontekście analizy gęstości strumienia ciepła transferowanego w wyniku spalania masy zapłonowej (prochu czarnego). Przedstawiono propozycję indywidualizacji doboru warunków zapłonu podczas określania szybkości spalania dla prochów różniących się kształtem i wielkością ziaren prochowych.
EN
In the paper the linear form of burning rate law r=r1źp, describing changes (in proportion to pressure p) in burning rate of propellants is reviewed. The linear form is one of many (but very popular) forms of burning rate law predicted to analysis and computer simulations of propellant gun systems operating and design process of gun. Coeffcient r1 of the linear form is usually calculated on the basis of average dimensions of grain (layer of burnt propellant) and integrated experimental pressure-time curve. Recorded picture of pressure of propellant gas mixture is an effect of closed vessel test. It is assumed that value of coeffcient r1 is constant (for given type of propellant) regardless of value of propellant gas pressure. Different fne-grained propellants (single-base and double-base) were fred in closed vessel tests to determine their burning rate behaviour. The variations in mass of igniter pad (black powder) at the same value of loading density were used. The results of experimental tests and calculations presented in this paper show signifcant infuence of the used type of ignition system (mass of black powder) on burning rate (coeffcient r1) of propellant. The differences in calculations of propellant burning rate and computer simulations of pressure-travel history inside the barrel of a propellant gun system indicate that there are limitations to the validity of the linear form approach particularly for fne-grained propellants.
EN
Linear form of the burning rate law r=r₁p, describing changes (with the pressure p) in burning rate of propellants, is very popular in East European ballistics laboratories for analysis and computer simulations of propellant gun systems regardless of propellant type and dimensions of propellant grains. The coefficient r₁ of the linear form of burning rate law is usually calculated on the basis of average dimensions of a grain (layer of burnt propellant) and integrated experimental pressure-time curve. A recorded picture of pressure of propellant gas mixture is an effect of closed vessel test. It is assumed that a value of the coefficient r₁ is constant (for given type of propellant) regardless of a value of a propellant gas pressure. Different single-base propellants were fired in closed vessel tests to determine their burning rate behaviour. In order to determine the burning rate law coefficient, the variations in mass of igniter material (black powder) at the same value of loading density were used. The results of experimental tests and calculations presented in this paper show significant influence of the used type of ignition system (mass of black powder) on burning rate (the coefficient r₁) of propellant. Differences in burning rate calculations may be the reason of considerable errors in theoretical calculations of pressure-travel and velocity-travel curves during internal ballistic computer simulations of a gun propellant system.
PL
Bardzo popularna w laboratoriach balistycznych Europy Wschodniej liniowa postać r=r₁p prawa szybkości spalania prochów wykorzystywana jest w analizach i symulacjach komputerowych pracy prochowych układów miotających niezależnie od typu prochu i wymiarów ziaren prochowych. Wartość współczynnika r₁ liniowej postaci tego prawa zgodnie z przyjętą metodyką jest obliczana na podstawie średnich wymiarów ziaren prochu (grubości spalonej warstwy prochu) oraz impulsu ciśnienia gazów prochowych z badań pirostatycznych. Zakłada się, że wartość współczynnika r₁ jest stała (dla danego typu prochu) i nie zależy od wartości ciśnienia gazów prochowych. W ramach niniejszej pracy - w celu określenia wartości współczynnika prawa szybkości spalania przeprowadzono, dla jednej określonej gęstości ładowania, badania pirostatyczne kilku prochów jednobazowych o różnych kształtach ziaren prochowych. W trakcie badań zastosowano różne masy zapłonników z prochu czarnego. Zaprezentowane w artykule wyniki badań eksperymentalnych i obliczeń pokazują istotny wpływ zastosowanego układu zapłonowego na szybkość spalania (współczynnik r₁ prawa szybkości spalania) prochu. Ukazane różnice w wynikach obliczeń współczynnika r₁ mogą być przyczyną błędów w kalkulacjach krzywych balistycznych charakteryzujących pracę prochowych układów miotających.
PL
Ze względu na ograniczoną wytrzymałość ścianek komór manometrycznych, badania pirostatyczne stałych materiałów miotających realizowane są zwykle przy gęstościach ładowania Δ = (50÷250) kg/m³, znacznie mniejszych od gęstości ładowania występujących w realnie istniejących prochowych układach miotających. Ponadto stosowane w trakcie badań pirostatycznych układy zapłonowe oraz warunki zapłonu, wynikające ze znormalizowanej metodologii badań pirostatycznych (opisanej m.in. w NATOwskim dokumencie standaryzacyjnym STANAG 4115, amerykańskiej normie MIL STD 286B, czy też w niemieckiej normie TL 1376-600) znacznie odbiegają od układów zapłonowych stosowanych w rzeczywistej amunicji. Możliwość analizy szybkości spalania prochu dla dużych gęstości ładowania ( Δ > 250 kg/m³) daje specyficzna komora manometryczna VCV (ang. Vented Closed Vessel) wyposażona w przeponowy zawór bezpieczeństwa, którego przepona pęka przy ciśnieniu niższym od dopuszczalnego, umożliwiając wypływ gazów prochowych i niespalonych części ładunku prochowego do otoczenia. W pracy przedstawiono szybkość spalania prochu jednobazowego wyznaczoną na podstawie wyników badań pirostatycznych, realizowanych w konwencjonalnej komorze manometrycznej oraz w komorze z przeponą. Badania w komorze z przeponą realizowano w warunkach gęstości ładowania Δ = (300÷700) kg/m³.
EN
Because of limited durability of walls, closed vessel tests are usually realised for a range of loading density under 250 kg/m³ (less than in real barrel propellant systems). Adequate formal standards and regulations (STANAG 4115, American standard MIL STD 286B, and German standard TL 1376-600) recommend different conditions of ignition of closed vessel tests. Using a vented closed vessel, equipped with a diaphragm safety valve, analysis of propellant burning rate for high loading densities ( above 250 kg/m³) is possible. Conventional, single-base, seven-tubed propellant was fired to determine burning rate behaviour. The paper presents the results of burning rate analysis. The burning rate law is expressed as exponential dependence on the pressure ( r = β p α ) where α is the pressure index and β is the burning rate constant of the propellant composition. Comparative closed vessel experiments were realised in a conventional closed vessel ( range of loading density of 50÷225 kg/m³) and in a vented closed vessel ( range of loading density of 300÷700 kg/m³).
PL
Podczas realizacji badań pirostatycznych zapłon prochu realizowany jest (np. w STANAG 4115, MIL-STD 286B) w warunkach znacznie odbiegających od tych, jakie występują w rzeczywistych układach miotających. O ile wyznaczone w tych badaniach wartości charakterystyk energetycznych prochów (siła prochu, kowolumen) można bezpośrednio transponować jako dane wejściowe do równań problemu głównego balistyki wewnętrznej to okazuje się, że szybkości spalania prochu jest bardziej wrażliwa na zmienne warunki zapłonu i nie jest możliwe jej bezpośrednie transponowanie do równania dopływu gazów bez wprowadzenia odpowiednich współczynników poprawkowych. W artykule wskazano na osobliwości dotyczące obiektywnego wyznaczenia współczynników prawa szybkości spalania i funkcji temperaturowej prawa szybkości spalania.
EN
When the pyrostatic tests are carried out the ignition of the powder is made (like in STANAG 4115, MIL-STD 286B) in conditions which differ substantially from existing in real projecting systems. Even if the energetic characteristics of powders measured at such tests may be directly used in the solving problems of internal ballistics by a system of equations it proofs that the burning velocity of powders is more sensitive on the changeable ignition conditions and its application into the gas generation equation requires some additional corrective coefficients to be used. Some specific conditions referring to the measurement of accurate values of coefficients for the burning velocity equation are presented in the paper.
EN
Different gaseous ignition systems have been used for the characterization of spherical deterred propellants in closed vessel tests. It has been observed that, with an appropriate ignition system, a good correlation is obtained between closed vessel tests, deterrent concentration profiles and ballistic firing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.