We classify vector sheaves (an abstraction of vector bundles) by means of a universal Grassmann sheaf. This is done in three steps. Given a sheaf of unital commutative and associative algebras A, we first construct the k-th Grassmann sheaf GA(k, n) of An, whose sections induce vector subsheaves of An of rank k. Next we show that every vector sheaf (a locally free A-module) over a paracompact space is a subsheaf of A∞. In the last step, the foregoing considerations lead to the construction of a universal Grassmann sheaf GA(n), whose global sections classify vector sheaves of rank n over a paracompact space. Note that a homotopy classification is not applicable in this context.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.