This article discusses coordination preferences of N-substituted iminodi(methylenephosphonic) acids to the different metal ions in an aqueous solution. These ligands exhibit high complexation efficiency towards divalent metal ions. This results from both dinegatively charged phosphonate groups as well as the imino nitrogen present in their structure. A significant preference for an equimolar stoichiometry has been demonstrated in these systems. The only exception is the N-2-methyltetrahydrofuryliminodi( methylenephosphonic) acid with a tetrahydrofuryl moiety, placed in the sterically favoured position that allows its oxygen atom to be an effective metal binding site. Specific interactions between metal ions and furyl oxygen results in higher binding ability of this ligand and a formation of 1:2 species. Coordination properties of iminodi- (methylenephosphonic) acids are important factors to understand the role of the ligands and metal ions in biological systems. A summary presented in this review points on the direction of the research for future work in this area, which should be developed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.