Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  charge exchange process
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A system with independent, early inlet valve closure (EIVC) has been analysed. The open, theoretical cycle has been assumed as a model of processes proceeding in the engine with variable inlet valve actuation. The system has been analysed individually and comparatively with open Seiliger-Sabathe cycle which is theoretical cycle for the classic throttle governing of engine load. The influence of EIVC on fuel economy, cycle work, relative charge exchange work and cycle efficiency has been theoretically investigated. The use of the analysed system to governing of an engine load will enable to eliminate a throttling valve from inlet system and reduce the charge exchange work, especially within the range of partial load. The decrease of the charge exchange work leads to an increase of the internal and effective works, which results in an increase of the effective efficiency of the spark ignition engine.
EN
The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.
EN
The paper tackles the problems connected with the charge exchange in internal combustion engines. The theoretical analysis of the charge exchange process in the SI engine has been presented. A system with independent, early exhaust valve closing has been analysed. The analysed system enables realization of an internal EGR and elimination of a throttling valve from an inlet system and reduce the charge exchange work, especially within the range of partial load. The decrease of the charge exchange work leads to an increase of the internal and effective works, which results in an increase of the effective efficiency of the spark ignition engine. The open, theoretical cycle has been assumed as a model of processes proceeding in an engine. The system has been analysed individually and comparatively with open Seiliger-Sabathe cycle. Benefits resulting from application of the system with early exhaust valve closing have been assessed on the basis of the selected parameters: a fuel dose, a cycle work, a relative charge exchange work and a cycle efficiency. The best results within decrease of fuel consumption and increase of cycle efficiency are obtained for low engine load. The main parameters characterizing the process of the internal exhaust gas recirculation were also determined. These are the ratio and the multiplicity of the exhaust gas recirculation.
EN
The paper tackles the problems connected with the charge exchange in internal combustion engines. The theoretical analysis of the charge exchange process in the SI engine has been presented. The realization of the charge exchange process is connected with the necessity of overcoming the flow resistances, then with the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by throttling valve is especially high at the partial load running of an engine. A system with independent, late intake valve closing has been analysed. The use of the analysed system to governing of an engine load will enable to eliminate a throttling valve from inlet system and reduce the charge exchange work, especially within the range of partial load. The decrease of the charge exchange work leads to an increase of the internal and effective works, which results in an increase of the effective efficiency of the spark ignition engine. The open, theoretical Atkinson-Miller cycle has been assumed as a model of processes proceeding in the engine with variable intake valve actuation. The system has been analysed individually and comparatively with open Seiliger-Sabathe cycle, which is theoretical cycle for the classic throttle governing of engine load. Benefits resulting from application of the system with late intake valve closing have been assessed on the basis of the selected parameters: a fuel dose, a cycle work, relative charge exchange work and cycle efficiency.
PL
Przeprowadzono analizę systemu z niezależnym, opóźnionym zamknięciem zaworu dolotowego, umożliwiającego wyeliminowanie przepustnicy z układu dolotowego silnika ZI. Jako model procesów zachodzących w silniku przyjęto otwarty obieg teoretyczny Atkinsona-Millera. Odniesieniem dla oceny korzyści oraz badania efektywności pozyskiwania pracy, w wyniku zastosowania systemu z opóźnionym zamknięciem zaworu dolotowego, jest otwarty obieg teoretyczny Seiligera-Sabathe'a z powszechnie stosowaną, klasyczną regulacją dławieniową obciążenia. Analizę porównawczą efektywności zastosowania zaproponowanego systemu przeprowadzono opierając się na wybranych wielkościach: dawce paliwa, parametrze energetyczno-stechiometrycznym, pracy obiegu, względnej pracy wymiany ładunku oraz sprawności obiegu.
EN
A system with independent, late inlet valve closing has been analysed. The use of the analysed system to governing of engine load will enable to eliminate a throttling valve from inlet system of a spark ignition engine. The open, theoretical Atkinson-Miller cycle has been assumed as a model of processes proceeding in an engine. The system has been analysed individually and comparatively with open Seiliger-Sabathe cycle. Benefits resulting from application of the system with late inlet valve closing have been assessed on the basis of the selected parameters: a fuel dose, a cycle work, a relative charge exchange work and a cycle efficiency.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.