Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  channel fading
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this work, the performance of selective-decode and forward (S-DF) relay systems over κ-µ fading channel conditions is examined in terms of probability density function (PDF), system model and cumulative distribution function (CDF) of the κ-µ distributed envelope, signal-to-noise ratio and the techniques used to generate samples that rely on κ-µ distribution. Specifically, we consider a case where the sourceto-relay, relay-to-destination and source-to-destination link is subject to independent and identically distributed κ-µ fading. From the simulation results, the enhancement in the symbol error rate (SER) with a stronger line of sight (LOS) component is observed. This shows that S-DF relaying systems may perform well even in non-fading or LOS conditions. Monte Carlo simulations are conducted for various fading parameter values and the outcomes turn out to be a close match for theoretical results, which validates the derivations made.
2
Content available remote Dynamic Channel Modeling at 2.4 GHz for On-Body Area Networks
EN
In wireless body area networks, on-body radio propagation channels are typically time-varying, because of the frequent body movements. The dynamic local body scattering dominates the temporal and spatial properties of the on-body channels. The influence varies largely depending on the distribution of the channels and the modes of body movements. In this paper, we present some major achievements on the dynamic on body channel modeling at 2.4 GHz under the framework of the COST 2100 action. Results of two complementary measurement campaigns are presented: a geometry-based one on a single subject, and a scenario-based one covering different subjects. Statistical models including the Doppler spectrum and the spatial correlation of on-body channels are presented. An analytical model is also introduced to offer a time-space description of the on-body channels, which is validated by the geometry-based measurement campaign.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.