Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  channel estimation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, channel estimation capabilities of a multiple-input multiple-output (MIMO) system using superimposed training sequences are investigated. A new expression for estimation-error variance is derived. It is shown that the training sequences must be balanced and must have specific correlation properties. The latter are required only in a specific zone. Sequences that satisfy these criteria exist and are referred to as zero-correlation zone (ZCZ) solutions. Consequently, by using balanced ZCZ sequences, harmful direct current (DC) offset can be removed. Owing to their zero-cross correlation, interference from other transmitting antennas may be eliminated. Furthermore, a closed-form expression of the estimation-error variance can be obtained due to their impulse-like autocorrelation. To increase the number of antennas in the MIMO system, a new construction of ZCZ sequence set is proposed, in which all sequences are balanced.
PL
Artykuł dotyczy doboru metody estymacji parametrów kanału, odpowiedniej do zastosowania w terminalu wąskopasmowego Internetu Rzeczy. Przedstawiono strukturę sygnału pilotowego NRS, używanego do wyznaczenia współczynników kanału w LTE-NB. Zaproponowano cztery warianty metody wyznaczenia współczynników kanału dla całej ramki transmisyjnej. Dokonano oceny tych wariantów w oparciu o dwa wskaźniki jakościowe skojarzone z błędem odtworzonych symboli względem konstelacji odniesienia. Na tej podstawie wskazano wariant optymalny.
EN
The paper treats about the selection of channel estimation method suitable for narrowband internet-of-things user equipment. The structure of NRS reference signal, used for channel coefficients calculation in LTE-NB, is presented. Authors propose four variants of estimating channel coefficients for resource elements in whole transmission frame. These variants were evaluated using two quality indicators related to error between recovered symbols and reference complex constellation. As a result, optimal variant was selected.
EN
Filter bank multicarrier waveform is investigated as a potential waveform for visible light communication broadcasting systems. Imaginary inter-carrier and/or inter-symbol interference are causing substantial performance degradation in the filter bank multicarrier system. Direct current-biased optical filter bank multicarrier modulation overcomes all the problems of direct current-biased optical-orthogonal frequency division multiplexing modulation approaches in terms of speed and bandwidth. However, it also wastes a lot of energy while transforming a true bipolar signal into a positive unipolar signal by adding direct current-bias. In this paper, a flip-filter bank multicarrier-based visible light communication system was introduced to overcome this problem. In this system, a bipolar signal is converted to a unipolar signal by isolating the positive and negative parts, turning them to positive and then delivering the signal. Also, a new channel estimation scheme for a flip-filter bank multicarrier system is proposed which improves the channel estimation performance compared to that of each of the conventional schemes. The proposed system performance is measured in terms of bit error rate, normalized mean squared error, and constellation diagram. The superiority of the proposed scheme over other conventional structures has been successfully verified by MATLAB 2020b simulation experiments results. These results are evaluated under indoor visible light communication standard.
EN
The linear minimum mean square error (LMMSE) channel estimation technique is often employed in orthogonal frequency division multiplexing (OFDM) systems because of its optimal performance in the mean square error (MSE) performance. However, the LMMSE method requires cubic complexity of order O(N 3 p ), where Np is the number of pilot subcarriers. To reduce the computational complexity, a discrete Fourier transform (DFT) based LMMSE method is proposed in this paper for OFDM systems in the frequency selective channel. To validate the proposed method, the closed form mean square error (MSE) expression is also derived. Finally, a computer simulation is carried out to compare the performance of the proposed LMMSE method with the classical LS and LMMSE methods in terms of bit error rate (BER) and computational complexity. Results of the simulation show that the proposed LMMSE method achieves exactly the same performance as the conventional LMMSE method, with much lower computational complexity.
EN
Due to the multifold growth in demands of multimedia services and mobile data, the request for increased channel capacity in mobile and wireless communication has been quickly increasing. Developing a wireless system with more spectral efficiency under varying channel condition is a key challenge to provide more bit rates with limited spectrum. Multiple Input Multiple Output(MIMO) system with Orthogonal Frequency Division Multiplexing (OFDM) gives higher gain by using the direct and the reflected signals, thus facilitating the transmission at high data rate. An integration of Spatial Modulation (SM) with OFDM (SM OFDM) is a newly evolved transmission technique and has been suggested as a replacement for MIMO -OFDM transmission. In practical scenarios, channel estimation is significant for detecting transmitted data coherently. This paper proposes pilot based, Minimum Mean Square Error (MMSE) channel estimation for the SM OFDM communication system. We have focused on analyzing Symbol Error Rate (SER) and Mean Square error (MSE) under Rayleigh channel employing International Telecommunication Union (ITU) specified Vehicular model of Pilot based MMSE channel estimator using windowed Discrete Fourier Transform (DFT) and MMSE weighting function. Simulation output shows that proposed estimator’s SER performance lies close to that of the MMSE optimal estimator in minimizing aliasing error and suppressing channel noise by using frequency domain data windowing and time domain weighting function. Usage of the Hanning window eliminates error floor and has a compact side lobe level compared to Hamming window and Rectangular window. Hanning window has a larger MSE at low Signal to Noise Ratio (SNR) values and decreases with high SNR values. It is concluded that data windowing technique can minimize the side lobe level and accordingly minimize channel estimation error when interpolation is done. MMSE weighting suppresses channel noise and improves estimation performance. Since Inverse Discrete Fourier Transform(IDFT)/DFT transforms can be implemented with fast algorithms Inverse Fast Fourier Transform( IFFT)/Fast Fourier Transform(FFT) computational complexity can be remarkably reduced.
EN
A 2×2 MIMO wireless communication system with channel estimation is simulated, in which two transmit, and two receive antennas are employed. The orthogonal pilot signal approach is used for the channel estimation, where the Hadamard sequences are used for piloting. Data are modulated by coherent binary phase-shift keying, whereupon an orthogonal space-time block coding subsystem encodes information symbols by using the Alamouti code. Based on the simulation, it is ascertained a possibility to decrease the bit-error rate by substituting the Hadamard sequences for the sequences having irregular structures, and constituting the eight known orthogonal bases. Considering a de-orthogonalization caused by two any pilot sequence symbol errors, the bit-error rate is decreased by almost 2.9 %. If de-orthogonalizations are caused by two repeated indefinite, and definite pilot sequence symbol errors, the decrements are almost 16 % and 10 %, respectively. Whichever sequences are used for piloting, the 2×2 MIMO system is ascertained to be resistant to the de-orthogonalization if the frame is of 128 to 256 symbols piloted with 32 to 64 symbols, respectively.
PL
W pracy przedstawiono symulowany system komunikacji bezprzewodowej 2×2 MIMO z oszacowaniem kanału, składający się z dwóch anten nadawczych i dwóch anten odbiorczych. W procesie szacowania kanału zastosowano podejście ortogonalnego sygnału pilotującego z wykorzystaniem sekwencji Hadamarda. Na potrzeby badań symulacyjnych przyjęto modulowanie danych za pośrednictwem spójnego binarnego kluczowania z przesunięciem fazowym, podczas gdy ortogonalny podsystem kodowania bloków czasoprzestrzennych odpowiedzialny był za kodowanie informacji z wykorzystaniem kodu Alamouti. Na podstawie symulacji ustalono możliwość zmniejszenia współczynnika błędnych bitów przez zastąpienie sekwencji Hadamarda sekwencjami należącymi do ośmiu znanych baz ortogonalnych i charakteryzującymi się nieregularnymi strukturami. W przypadku deortogonalizacji wynikającej z dwóch dowolnych błędów symboli sekwencji pilotujących, współczynnik ten został zmniejszony o prawie 2.9 %. Jeśli deortogonalizacje są spowodowane przez dwa powtarzające się błędy symboli sekwencji pilotujących, nieokreślone i określone błędy uległy zmniejszeniu o odpowiednio 10 % i 16 %. Bez względu na to, które sekwencje zostały użyte do pilotowania, wykazano odporność systemu 2×2 MIMO na deortogonalizację w przypadku, gdy ramka zawierała od 128 do 256 symboli, a rozmiar sekwencji pilotującej mieścił się w zakresie od 32 do 64 symboli.
7
Content available Estimation of UFMC Fading Channels Using H∞ Filter
EN
Universal filtered multi-carrier (UFMC) modulation is a very powerful candidate to be employed for future 5G mobile systems. It overcomes the limitations and restrictions in current modulation techniques employed in 4G mobile systems and supports future applications, such as machineto-machine (M2M), device-to-device (D2D), and vehicle-tovehicle (V2V) communications. In this paper, we address the estimation of UFMC fading channels based on the comb-type pilot arrangement in the frequency domain. The basic solution is to estimate the fading channel based on the mean square error (MSE) or least square (LS) criteria with adaptive implementation using least mean square (LMS) or recursive least square (RLS) algorithms. However, these adaptive filters seem not to be effective, as they cannot fully exploit fading channel statistics, particularly at high Doppler rates. To take advantage of these statistics, time-variations of the fading channel are modeled by an autoregressive process (AR), and are tracked by an H∞ filter. This, however, requires that AR model parameters be known, which are estimated by solving the Yule-Walker equation (YWE), based on the Bessel autocorrelation function (ACF) of the fading channel with a known Doppler rate. Results of Matlab simulations show that the proposed H∞ filter-based channel estimator is more effective when compared with existing estimators.
EN
In this paper, we estimate the upper limit of the transmission data rate in airborne ultrasonic communications, under condition of the optimal power allocation. The presented method is based on frequency response of a channel in case of single-path LOS propagation under different climatic conditions and AWGN background noise model, and it can be easily extended to the case of frequency-dependent noise. The obtained results go beyond the discrete distances for which experimental SNR values were available, and are more accurate than the previous calculations in the literature, due to the inclusion of the channel frequency response and its changes over the distance. The impact of air temperature, relative humidity and the atmospheric pressure on the channel capacity is also investigated. The presented results can serve as a reference during the design of airborne ultrasonic communication systems operating in the far-field region.
EN
Orthogonal Frequency Division Multiplexing (OFDM) is a well-known technique used in modern wide band wireless communication systems. Coherent OFDM systems achieve its advantages over a multipath fading channel, if channel impulse response is estimated precisely at the receiver. Pilot-aided channel estimation in wide band OFDM systems adopts the recently explored compressive sensing technique to decrease the transmission overhead of pilot subcarriers, since it exploits the inherent sparsity of the wireless fading channel. The accuracy of compressive sensing techniques in sparse channel estimation is based on the location of pilots among OFDM subcarriers. A sufficient condition for the optimal pilot selection from Sylow subgroups is derived. A Sylow subgroup does not exist for most practical OFDM systems. Therefore, a deterministic pilot search algorithm is described to select pilot locations based on minimizing coherence, along with minimum variance. Simulation results reveal the effectiveness of the proposed algorithm in terms of bit error rate, compared to the existing solutions.
10
Content available Damped Zero-Pseudorandom Noise OFDM Systems
EN
This paper proposed a new OFDM scheme called damped zero-pseudorandom noise orthogonal frequency division multiplexing (DZPN-OFDM) scheme. In the proposed scheme, ZPN-OFDM non-zero part is damped to reduce its energy, thus the mutual interference power in-between the data and training blocks with conservative the pseudo-noise conventional properties required for channel estimation or synchronization. The motivation of this paper is the OFDM long guard interval working in wide dispersion channels, whereas a significant energy is wasted when the conventional ZPN-OFDM is used as well as the BER performance is also degraded. Moreover, the proposed scheme doesn’t duplicate the guard interval to solve the ZPN-OFDM spectrum efficiency loss problem. Both detailed performance analysis and simulation results show that the proposed DZPNOFDM scheme can, indeed, offer significant bit error rate, spectrum efficiency and energy efficiency improvement.
EN
Time Domain Synchronous Orthogonal Frequency Division Multiple Access (TDS-OFDMA) is used in mobile broadband wireless access scheme in uplink transmission. This leads to multiple user interference due to timing offset and frequency offset. In this paper, the effect of timing offset and channel estimation in mobile broadband system is analysed. Time-space two dimensional structure is used in TDS-OFDMA and perfect sequence is used for guard interval to achieve perfect timing synchronization and channel estimation for each user. Simulations are performed for timing synchronization and channel estimation using perfect sequence under Urban channel, Indoor Office B channel and HIPER LAN-A channel. Simulation results show that the timing synchronization is achieved and channel estimation performance using perfect sequence is better than CAZAC and PN Sequences.
EN
This paper proposes an adaptive pilot pattern to improve channel estimation performance for LTE downlink system with high mobility. The downlink pilot positions are predefined in the time and frequency domain with fixed pilot pattern in LTE standard. However, that pilot structure is not efficient in a fast time varying channel, and leads to a decrease of channel estimation performance. The authors propose and evaluate the performance of LTE downlink channel estimation using an adaptive pilot scheme to optimally use pilot tones over time varying channels. It is shown that only seven bits of additional wide-band feedback per frame and per user are required to optimally support adaptive pilot pattern. Simulation results show that the proposed method allows high performance in terms of throughput and channel estimation error. This analysis shows that LTE downlink throughput could be increased over 4%.
EN
In this work, a Iow complexity time domain channel estimation algorithm for LOFDM (Lattice Orthogonal Frequency Division Multiplexing) systems is proposed through doubly-average based on the equivalent time-frequency subspace projection and traditional frequency domain pilot time domain average (FPTA) algorithm with special pilot design. Furthermore, the interference problem is analyzed and the Cramer-Rao bound (CRB) of the time domain channel estimation for LOFDM systems is also deduced. Our theoretic analyses are confirmed by numerical results.
PL
Zaproponowano algorytm określania w dziedzinie czasu kanałów dla systemu LOFDM bazujący na projekcji czasowo-częstotliwościowej podprzestrzeni oraz systemu pilota FPTA. Przeanalizowano problem zakłóceń. Analizę teoretyczną potwierdziły rezultaty numeryczne.
14
Content available Linear quadratic power control for CDMA systems
EN
In this paper, we present a robust decentralized method for jointly performing channel estimation and closed loop power control for the reverse link of CDMA networks. Our method, based on linear quadratic Gaussian (LQG) control systems theory and Kalman filtering, does not require any training symbols for channel or signal to interference ratio (SIR) estimation. The main interest of this new scheme is that it improves the performance of current SIR based power control techniques while avoiding the problem of power escalation, which is often observed in current systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.