Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 40

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  chalcopyrite
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Pulsating high-gradient magnetic separation (PHGMS) is a promising method of separating chalcopyrite from other minerals with similar floatability. However, the capture characteristics of chalcopyrite in the PHGMS process remain poorly understood. In this study, the difference in the capture capacity of chalcopyrite and hematite, a typical weak magnetic mineral, was theoretically compared. The effects of the key operating parameters, i.e., magnetic induction, slurry flow rate, and magnetic wire diameter, on the capture difference between chalcopyrite and hematite, were investigated through experimental verification. The comparison results showed that chalcopyrite shared a similar capture trend with hematite. The capture mass weight of the matrix decreased with an increase in the pulsating frequency, slurry flow rate, and magnetic wire diameter, but it increased with improved magnetic induction. However, chalcopyrite exhibited a smaller capture mass weight due to its lower susceptibility, which required a higher magnetic induction (1.4 T), slower flow rate (1.5 cm/s), lower pulsating frequency (150 rpm), and smaller matrix diameter (1 mm) for higher efficient recovery of chalcopyrite. As the magnetic induction increased from 0.8 T to 1.6 T, the chalcopyrite recovery improved from 65.84% to 75.80%. These findings provide valuable information for improving the utilization of chalcopyrite.
EN
Abstract: The difference in chalcopyrite's primary ore-hosting rocks (dolomite and carbonaceous slate) in the Democratic Republic of the Congo results in an extremely uneven grain size distribution. Additionally, the presence of 2.21% organic carbon in the gangue impacts flotation efficiency. To address these challenges, ore properties were analyzed using the Mineral Liberation Analyzer (MLA), X-Ray Diffractometer (XRD), and microscopy. Flotation process was modified to incorporate a "middlings regrinding" processing, utilizing PDEC (an alkyne-based thioester collector, prop-2-yn-1-yl diethylcarbamodithioate) as the collector for experimental studies. Density Functional Theory (DFT) calculations elucidated the interaction mechanism of PDEC on chalcopyrite's surface. The MLA analysis indicates that chalcopyrite is mainly found in medium to fine grains, with the presence of fine-grained copper minerals smaller than 0.04mm accounting for 16.29% of the sample. This implies that these minerals require fine grinding for effective separation. Despite interference from organic carbon, PDEC demonstrates remarkable selectivity and efficiency in chalcopyrite flotation. By employing the "middlings regrinding" flotation method, a concentrate with a Cu content of 26.79% and a recovery of 87.88% was achieved, representing an increase of 0.17% in Cu grade and 4.09% in recovery rate compared to the conventional flotation process. DFT analysis demonstrates that the S 3p orbitals in carbon-sulfur double bond of PDEC and the C 2p orbitals in its acetylene group significantly affect its collection efficiency, engaging in hybridization with the Fe 3d orbitals on the surface of chalcopyrite, thereby facilitating a robust bonding interaction.
EN
The effect of ethyl thioglycolate organic small molecule inhibitors on chalcopyrite molybdenite flotation behaviour is investigated via single mineral micro-flotation tests, zeta potential tests, and X-ray photoelectron spectroscopy (XPS) analysis. Results of the flotation test indicate that ethyl thioglycolate organic small-molecule inhibitors can effectively separate Cu and Mo and selectively inhibit chalcopyrite under weak alkaline conditions. Infrared spectroscopy and XPS analysis show that hydrophilic functional groups C=O and -COOH in the ethyl thioglycolate organic small molecules can chemically adsorb onto the chalcopyrite surface. Moreover, ethyl thioglycolate has no obvious effect on zeta potential of molybdenite. Therefore, ethyl thioglycolate can effectively separate chalcopyrite and molybdenite.
EN
In this study, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) was first introduced as a depressant during separating chalcopyrite from molybdenite (Cu-Mo). The selective effects of HACC on the separation of Cu-Mo were conducted by single-mineral flotation experiments. The findings from this study revealed that HACC helped separate Cu and Mo efficiently at pH 6 with 8 mg/dm3 of HACC, resulting in 76.22% and 5.38% of Mo and Cu flotation recovery, respectively. The adsorption mechanism of HACC was investigated via zeta potential, adsorption density, and contact angle measurement along with FT-IR and XPS analyses. The contact angle and adsorption density measurements offer indisputable proof that HACC can adsorb on the surface of chalcopyrite. Furthermore, FT-IR and XPS analyses confirm that N atoms in quaternary ammonium groups of HACC interact with Cu sites on the surface of chalcopyrite. The findings also suggest that HACC adsorbs on the surface without significantly impacting molybdenite. All these results confirm that HACC can be an effective chalcopyrite depressant.
EN
The mining industry aims to promote responsible chemical use during mineral processing operations to minimize the chemical contamination. Hydroxamic acids, which can form strong chelates with metals, have been shown to have less health and environmental issues when compared to xanthate collectors. In this work, the performance of benzohydroxamic acid (BHA) as a collector for galena, chalcopyrite, and quartz was evaluated. The minerals were conditioned with different concentrations (1.5, 3, and 4.5 kg/t) of collector at pHs 8, 9, and 10. The result showed that the treatment of the mineral surfaces with BHA enhanced the flotation recoveries of the sulfide minerals. High concentrations of benzohydroxamate anion, the protonic dissociation product of BHA, existed at basic pHs, where a chemical reaction between the anion and a metal cation on the mineral surface resulted in the adsorption of the collector onto the mineral surface. The microflotation results showed that the BHA collector was able to successfully recover galena and chalcopyrite. Their flotation recovery was dependent on the conditioning pH. Galena showed a high flotation recovery (up to 86%) at both pH 9 and 10, whereas chalcopyrite became most hydrophobic at pH values of 8 and 9 (up to 88%). None of the BHA concentrations or conditioning pHs was able to enhance quartz recovery beyond 7%. The research results have implications in the application of BHA for the froth flotation of galena and chalcopyrite.
EN
This study explores the characterization, liberation and flotation response of low-grade copper ore from Anka area, Zamfara state Nigeria. The ore was crushed, milled and sieved in accordance with BS 410 standard. It was characterized with XRD, XRF, SEM-EDS and AAS. Froth flotation was carried out with varying %solids, pH, retention time and collector dosages using SEX and sodium oleate. Particle size distribution of the ore shows its economic liberation between -150 and +106 µm while 80% passing corresponds to 175.7 µm using the Gaudin Schuhmann equation. However, according to metallurgical balance calculation, 63 µm proved to have the highest metal content. Identified peaks of the copper ore by XRD revealed the presence of pyrite and chalcopyrite as the major mineral content at 47 and 36%, respectively, while other elements were present in traces. XRF shows Fe and Cu as the major elements and others in traces. Morphology, according to SEM-EDS, revealed that Fe is the major impurity while the presence of Cu and S confirmed chalcopyrite is present in the ore minerals. AAS shows an average of 25.87% Cu and 32% Fe in the ore. Optimum recoveries of copper were recorded at 30% solids, pH of 8, 30 minutes retention time. The highest recovery of 95.94% was recorded with SEX at 0.25 mol/dm3, while recoveries were lower with PAX, the highest recovery being 33% at 0.20 mol/dm3. 0.25 mol/dm3 of SEX recorded the highest yield and enrichment ratio of 40.38 and 2.38, respectively.
EN
In this research, graphene oxide was introduced as an efficient flotation reagent for the selective separation of molybdenite from chalcopyrite. The performance of graphene oxide and its adsorption mechanism on chalcopyrite were investigated by flotation tests, FTIR spectra, and XPS measurements. First, graphene oxide was synthesised, and then its performance was evaluated by SEM, XRD, and EDX. Flotation tests were carried out in a hallimond flotation cell with a volume of 300 ml. Optimum flotation values were achieved at pH = 9 by adding 250 g/t of PAX (Potassium Amyl Xanthate) as a collector and 50 g/t of A65 (Poly Propylene Glycol) as a frother. The results showed high recovery, around 80% for molybdenite, while chalcopyrite was depressed in high amounts by employing 11 kg/t of graphene oxide as a depressant. Compared to common chalcopyrite depressants such as NaHS, Na2S, and C2H3NaO2S, graphene oxide had a higher potency in depressing, which can be applied as a green-depressant in the separation of molybdenite from chalcopyrite by the flotation process. Also, the validity of the depressing effect on chalcopyrite was verified by XPS and FTIR spectra.
EN
Bulk flotation is usually used in the flotation of Cu-Fe sulfide ore, and the subsequent concentrate is difficult to be separated because the minerals have adsorbed the collector. In this paper, flotation tests showed that calcium hypochlorite (Ca(ClO)2) had a stronger depression effect on pyrite pre-adsorbed sodium butyl xanthate (SBX), while having a negligible depressive effect on chalcopyrite. A copper concentrate with Cu grade of 33.32% and Cu recovery of 94.47% could be obtained from flotation tests of mixed minerals. The depression performance and mechanism of Ca(ClO)2 were studied by contact angle measurements, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses, the results suggested that Ca(ClO)2 can decomposes SBX on the pyrite surface and oxidizes the mineral surface to form hydrophilic substances, which enhances the hydrophilicity of the pyrite surface. In contrast, Ca(ClO)2 has little effect on chalcopyrite pre-adsorbed SBX, the possible depression model is discussed.
EN
It is demonstrated that amino acids such as glycine, betaine, and lysine may be applied as selective copper leaching agents in the process of hydrochemical oxidation of chalcopyrite at atmospheric pressure and in the temperature range 25÷65 °C. The advantage of the proposed method is its relative environmental friendliness. Solid samples of the initial mineral and leached chalcopyrite residues were analyzed by X-ray diffraction analysis, and Mössbauer and Raman spectroscopy. The results of the atomic absorption analysis showed that copper's extraction efficiency increased when the experiment's duration was raised and when the process temperature was higher. The leaching ability of amino acids was evaluated by the specific leaching rate of chalcopyrite in these reagents. Amino acid leaching was thought to be mainly due to the complexation of copper (II) glycinates, copper (II) betainates and copper (II) lysinates. This reaction can be enhanced by adding hydrogen peroxide to the system as an oxidant. It was determined that glycine was more effective as a leaching agent than betaine and lysine. Based on experimental data, it was assumed that the most possible mechanism is selective copper leaching due to the formation of chalcopyrite-based solid solution Cu1-XFeS2.
EN
Thermal pretreatment was performed to enhance the flotation separation of chalcopyrite and sphalerite under the air atmosphere for the first time. Microflotation experiment showed that the floatability of chalcopyrite vanished after thermal pretreatment at above 170℃. By contrast, the floatability of sphalerite was well maintained with a flotation recovery of 90%. In artificial mixed mineral flotation experiments, the separation of sphalerite and chalcopyrite was successfully realized by thermal pretreatment. Results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses indicated that the chalcopyrite surface was oxidized dramatically at 170℃, and hydrophilic species such as sulfate (SO42-), oxides (CuO and Fe2O3), and hydroxyl species (Fe(OH)3) were formed on the surface. Hence, the adsorption of potassium butyl xanthate on chalcopyrite decreased significantly after thermal pretreatment. The reason for the higher oxidation speed of chalcopyrite than that of sphalerite was also analyzed.
EN
In this study, the effect of frother was investigated in two and three phases in the systems of the flotation. While the two-phase system consisted of liquid and gas, the three-phase systems contained a chalcopyrite ore. The study of three-phase systems was performed with the ore on a laboratory and plant scale. Effect of the amount and type of the frothers, their mixtures, and pH were examined depending on the bubble size, grade of the concentrate, and the recovery of chalcopyrite flotation. The results showed that as the amount of frothers increased, there was a reduction in the bubble size in all experiments. Additionally, the frother mixtures gave a positive effect on the chalcopyrite flotation. One of the most important purposes of flotation frothers shrinks the air bubble. As can be understood from the tests this time reduction of the frothers bubble size has a positive effect on the flotation. Likewise, it increases the foam stable value. It is observed from this study that increasing the amount of frothers decreases the surface tension and bubble size at different pH.
EN
Chalcopyrite (CuFeS2) and pyrite (FeS2) are commonly associated with each other, and they both belong to semiconductor minerals. The difference in crystal and electronic structures is an important factor for their flotation separation. Using the density functional method (DFT) combined with Hubbard U correction, their crystal and electronic properties are comparatively studied. The calculated results suggest that the use of antiferromagnetic calculations and Hubbard U correction are very important to the accuracy of the chalcopyrite results. Antiferromagnetic calculations combined with a U value of 2.0 eV on chalcopyrite show a band gap of 0.53 eV, which is very consistent with the experimental results of ~0.5 eV. The density of states (DOS) and Mulliken bond population results indicate that stronger hybridization between Fe 3d and S 3p states in chalcopyrite than in pyrite leads to a stronger covalency of Fe-S bonds in chalcopyrite, causing a reduction in the spin magnetic moment (3.5 μB) from the ideal value. In addition, the greater covalency of bonds in chalcopyrite results in greater hydrophobicity of chalcopyrite than pyrite. The DOS results suggest that S has similar electronic properties in pyrite and chalcopyrite. The oxidation states of Fe and Cu ions in chalcopyrite are discussed based on the coordination field theory according to the calculation results, which confirms an oxidation state of Fe3+Cu1+S2.
EN
Raman spectroscopy as a high-resolution characterization technique was used to analyze various pure metal sulfides immersed in water, namely pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite (ZnS), marmatite (Zn1-XFeXS) and galena (PbS). The Raman characterization was undertaken in situ with the minerals immersed in water. Characteristic Raman spectrum that shows the vibrational modes of the atomic bonds in the mineral crystal structure is reported. This spectroscopic technique revealed that marmatite particles are composed of micro-size, perhaps nano-size, zones with different Fe and Zn content. With the intensity of the Fe-S and Zn-S Raman signals, the iron content of the zones was quantified. The copper ion up-take by marmatite particles was studied through this technique. It was found that the up-take of copper ions on the marmatite zones depended on their Fe content. Copper ion up-take occurred more preferentially on the zones of low Fe content than on those of high Fe content. The adsorption of the collector propyl xanthate on pyrite and chalcopyrite was also assessed by Raman spectroscopy. The Raman spectrum revealed that dixanthogen formed on the surface of these sulfides.
EN
The present work aims at investigating the effect of microwave local positions (i.e. before crushing (BC), after crushing (AC) and after milling (AM)) on microwave-assisted flotation of chalcopyrite and pyrite in a porphyry copper complex deposit. Individual given samples for each state were pre-treated with a variable power microwave at a power level of 90 to 900W for 15, 30, and 60s. Furthermore, froth floatation experiments were carried out using a laboratory mechanical Denver flotation cell on both microwave-treated and untreated samples. Particle surface properties were characterized by a scanning electron microscopy (SEM) and an energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the chalcopyrite and pyrite floatabilities increased monotonically by rising the exposure time and power level for the uncrushed preconditioned samples (BC) due to the enhancement of mineral liberation degrees together with the formation of sulphide species and polysulphides on the mineral surfaces. However, flotation results of treated samples for the crushed one (AC) revealed an optimum range. Formation of intensive oxide layers on the mineral surfaces of milled samples (AM) led to a substantial reduction in their recoveries by increasing the microwave’s power level and the sample’s exposure time. The results obtained from mineral’s floatabilities in recleaner stage showed that the microwave-assisted sample at 900W for 30s at BC state favourably provided 5% higher S.E.’s than that of the untreated sample. Finally, it was concluded that the microwave pretreatment of samples induced the best floatability responses if it located before the crusher.
EN
In this research work, high uniform CuFeS2 chalcopyrite with 20-40 nm particles were synthesized via a simple hydrothermal method. Different analysis were used to characterize the obtained product such as X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The photocatalytic activity of the product was investigated by degradation three different dyes namely acid brown, acid red and methylene blue. The results showed the synthesized CuFeS2 nanoparticles have high photocatalytic activity and can degrade the used dyes in large quantities.
EN
Flotation separation of chalcopyrite from talc is difficult because of the natural hydrophobicity of two minerals. In this work, the flotation separation of chalcopyrite from talc using N-carboxymethyl chitosan as a depressant for talc was studied. The micro-flotation results indicated that the flotation separation of chalcopyrite from talc cannot be realized effectively at pH 9 with low concentration of N-carboxymethyl chitosan, in the presence of calcium ions, talc was more efficiently depressed by N-carboxymethyl chitosan, while the chalcopyrite recovery was not influenced. Contact angle, zeta potential and adsorption results showed that Ca2+ and CaOH+ absorbed on the talc surface and increased the absorption amount of N-carboxymethyl chitosan on the mineral surface, and increased hydrophilicity of talc surface, resulting the selective depression for talc in chalcopyrite flotation.
EN
In this study, the synergistic depressive effect of polyaspartic acid (PASP) and zinc sulfate (ZnSO4) in the flotation separation of chalcopyrite from Cu-activated marmatite was investigated by micro-flotation experiments and ore sample flotation tests, and the possible depressive mechanism was proposed from contact angle measurements, fourier transform infrared (FT-IR) analysis, inductively coupled plasma (ICP) measurements and X-ray photoelectron spectroscopy (XPS) analysis. Microflotation tests indicated that the mixed depressant PASP/ZnSO4 (PZ) exerted strong depressive effect on Cu-activated marmatite in the pH range of 9~12, but it had little effect on chalcopyrite flotation. The ore sample flotation experiments indicated the PZ system decreased the grade of Zn in Cu concentrate by 4.18%, and the depressant consumption was reduced by more than a half. The results from contact angle measurement demonstrated that the hydrophobicity of Cu activated-marmatite surface was higher than that of chalcopyrite surface in presence of PZ. FT-IR analysis demonstrated the more intensive chemisorption of PZ on Cu-activated marmatite surface. ICP measurements showed that PASP had an excellent complexing ability with Cu2+ and Zn2+, which not only reduced the activation of Cu species, but also generated Zn-PASP complex on marmatite surface. XPS analysis indicated a stronger interaction between PZ and Cu-activated marmatite surface, and the depressant PZ may mainly react with Cu-activated marmatite surface through the copper atoms.
EN
A novel reagent, guar gum (GG), is investigated as the depressant on the depression of chalcopyrite and jamesonite, when mixed aerofloat (CSU11) is used as the collector in flotation tests. Kinetics, dynamic potential, adsorption and infrared spectra analysis are performed to study the interaction mechanism between GG and minerals. The flotation results display that selective flotation separation of chalcopyrite from jamesonite is achieved under conditions of depressant GG 2.5 mg/dm3, collector CSU11 10 mg/dm3 and frother MIBC (Methyl isobutyl carbinol) 10 mg/dm3 at pH 5.3. As to mixed minerals flotation, the Cu grade and recovery in the concentrate is 21.35 % and 85.12 %, respectively, indicating that GG has a selective depression effect on jamesonite. Flotation kinetics shows that the addition of GG can dramatically reduce the floatability of jamesonite but hardly influences that of chalcopyrite. The zeta potential and adsorption reveal that the depressant GG adsorbs strongly on the surface of jamesonite. Infrared spectra reveal a dominant chemisorption between GG and jamesonite, while GG occurs weak chemisorption on chalcopyrite surface. This is the reason why GG has excellent selectivity for jamesonite and less effect on chalcopyrite.
EN
The flotation separation of chalcopyrite from monoclinic pyrrhotite using food-grade guar gum (FGG) as a depressant was studied through micro flotation and flotation kinetics experiments, zeta potential, adsorption measurements and scanning electron microscope (SEM) analysis as well as infrared spectroscopy analysis. The flotation tests showed that the reagent scheme of depressant FGG 40 mg/dm3, collector PAX (potassium amyl xanthate) 10 mg/dm3 and frother MIBC (Methyl isobutyl carbinol) 10 mg/dm3 at pH 8.0 could achieve selective flotation separation of chalcopyrite from monoclinic pyrrhotite (a concentrate with Cu grade of 22.35% and recovery of 82.52% was achieved from the mixed minerals flotation), which indicated that FGG exhibited a selective depression effect on monoclinic pyrrhotite The kinetics, zeta potential, adsorption, SEM and infrared studies revealed that the depressant FGG could absorb more strongly on the surface of monoclinic pyrrhotite than chalcopyrite. Additionally, the results revealed that the interaction of FGG with the monoclinic pyrrhotite surface was governed primarily by strong chemisorption, whereas FGG mainly bonded to chalcopyrite through hydrogen bonding bonding. This property was the reason why FGG had excellent depression selectivity toward monoclinic pyrrhotite and weak depression effect on chalcopyrite flotation.
EN
The study deals with the use of flotation to obtain metals from the polymetallic ore from Zlate Hory, the Czech Republic. X-ray diffraction was performed, on the basis of which the mineralogical composition was determined in the sample. The most abundant was quartz with 87.03%. From ore minerals were detected pyrite 2.30%, sphalerite 3.64% and chalcopyrite 1.59%. Due to the high quartz content in the sample, heavy medium separation was selected to reduce its content. The treated polymetallic ore sample was subjected to flotation. In the flotation, the reagents xanthate was used as a collector, and pine oil as a frother. Different flotation conditions were observed, based on which the most suitable conditions for the flotation of metals were determined.
PL
Badanie dotyczy wykorzystania flotacji do otrzymywania metali z rudy polimetalicznej ze złoża Zlate Hory, Republika Czeska. Przeprowadzono dyfrakcję rentgenowską, na podstawie której określono skład mineralogiczny próbki. Największą zawartość wykazał kwarc z 87,03%. Z minerałów rudnych stwierdzono piryt 2,30%, sfaleryt 3,64% i chalkopiryt 1,59%. Ze względu na wysoką zawartość kwarcu w próbce wybrano rozdział w cieczy ciężkiej w celu zmniejszenia jego zawartości. Badaną próbkę rudy polimetalicznej poddano flotacji. We flotacji zastosowano ksantantogenian jako kolektor, a olej sosnowy jako spieniacz. Zbadano różne warunki flotacji, na podstawie których określono najbardziej odpowiednie warunki flotacji metali.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.