The method of evaluating the integrals through use of the matrix inversion, presented here, was introduced by J.W. Rogers and then generalized by Matlak, Słota and Wituła. This method is still developed and one of its other possible applications is presented in this paper. This application concerns a new way of evaluating the integral ʃ sec2n+1 xdx on the basis of the discussed method. Additionally, many other applications of the obtained original recursive formula for this type of integral are given here. Some of them are used to generate the interesting identities for inverses of the central binomial coefficients and the trigonometric limits. The historical view is also presented as well as the connections between the received and previously known identities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.