Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cement setting
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Prezentowany artykuł jest rozwinięciem zagadnień z zakresu technologii zaczynów uszczelniających dotyczących tzw. procesów żelowania (tj. narastania w zaczynach cementowych statycznej wytrzymałości strukturalnej w trakcie procesu wiązania). W zdecy- dowanej większości dotychczasowych publikacji w czasopismach naukowych i branżowych omawiano jedynie badania procesów żelowania zaczynów o tzw. normalnej gęstości, wynoszącej około 1800–1900 kg/m3 . W niniejszym artykule skoncentrowano się na zagadnieniu narastania statycznej wytrzymałości strukturalnej zaczynów cementowych, których gęstość kształtuje się na poziomie 1450–1600 kg/m3 . Analizując badania prowadzone na świecie należy podkreślić, że w procesie przeciwdziałania ewentualnym ekshalacjom gazowym z przestrzeni pierścieniowej tempo żelowania zaczynu cementowego odgrywa niezwykle istotną rolę. Dotyczy to zarówno zaczynów o normalnej, jak i o obniżonej gęstości. Po zabiegu wytłoczenia zaczynu poza rury okładzinowe znajduje się on początkowo w stanie płynnym i działa na złoże jako ciecz (poprzez wytworzone ciśnienie hydrostatyczne). Następnie po określonym czasie w zaczynie następuje budowa statycznej wytrzymałości strukturalnej SGS (ang. static gel strength), co powoduje stopniowy spadek ciśnienia hydrostatycznego. Proces ten trwa aż do momentu związania cementu. W Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym opracowano szereg receptur innowacyjnych zaczynów cementowych o obniżonej gęstości, do których wprowadzono dodatki nanokomponentów oraz polimeru wielkocząsteczkowego. Gęstość zaczynów obniżano za pomocą dodatku różnych koncentracji mikrosfer. Receptury lekkich zaczynów, które zawierały w odpowiedniej koncentracji wielkocząsteczkowy polimer o symbolu GS, a także te zawierające nanokomponenty w postaci n-SiO2 i n-Al2O3 cechowały się bardzo korzystnym przebiegiem krzywej żelowania (tj. szybkim narastaniem statycznej wytrzymałości strukturalnej). Lekkie zaczyny cementowe o najkorzystniejszych parametrach, tj. krótkich czasach przejścia TT (ang. transition time), mogą znaleźć zastosowanie w procesie cementowania kolumn rur okładzinowych w otworach wiertniczych – zwłaszcza w warstwach słabo zwięzłych lub horyzontach o obniżonym gradiencie ciśnienia złożowego.
EN
The presented article is an extension of the issues in the field of sealing slurries technology related to the so-called gelling processes (i.e. the build-up of static structural strength in cement slurries during the setting process). The vast majority of papers published in scientific and trade journals discussed only the study of the gelling of slurries with the so-called “normal” density of around 1800–1900 kg/m3 . This article focuses on the issue of the build-up of static structural strength of cement slurries, the densities of which range from 1450–1600 kg/m3 . Based on research conducted around the world, it can be concluded that the rate of gelling of the cement slurry plays an important role in the process of preventing possible gas exhalations from the annular space. This is the case with both normal and reduced density of slurry. The initially liquid cement slurry, when pumped out of the casing, acts as a liquid, creating a certain hydrostatic pressure on the deposit. Then, after some time, the period of building the static gel strength (SGS) starts, causing a gradual drop in hydrostatic pressure. This process continues until the cement sets. The Oil and Gas Institute – National Research Institute has developed a number of innovative recipes for cement slurries with reduced density, with added nanocomponent and high-molecular weight polymer additives. The densities of the slurries were lowered with the addition of various amounts of microspheres. The formulas of light slurries containing the high-molecular weight polymer marked as GS in an appropriate concentration and those containing n-SiO2 and n-Al2O3 nanocomponents were characterized by a very advantageous course of the gelation plot (i.e. rapid static build-up of gel strength). Light cement slurries with the most advantageous parameters, i.e. short Transition Times (TT), can be used in the process of cementing casing columns in boreholes, especially in weakly compact layers or horizons with a reduced formation pressure gradient.
PL
Projektowanie otworów wiertniczych jest zagadnieniem kompleksowym i wielowymiarowym zarówno pod względem liczby kwestii, jakie stoją do rozwiązania przed projektantem, jak też pod względem wymogów w zakresie inżynierii mechanicznej, środowiskowej oraz bezpieczeństwa publicznego. W niniejszym artykule dokonano przeglądu i oceny zjawisk oraz procesów chemicznych (nie zawsze prawidłowo ocenianych), jakie zachodzą w trakcie sporządzania zaczynu cementowego oraz po jego wytłoczeniu w trakcie tworzenia się struktury żelowej cementu i kamienia cementowego. W wyniku skomplikowanego chemicznie przebiegu procesu wiązania zaczynu powstaje nowa struktura rura–kamień cementowy–skała, która w specyficzny sposób tworzy określony rodzaj obciążeń i naprężeń w przestrzeni pierścieniowej, wywierając wpływ na zmianę rozkładu ciśnienia hydrostatycznego. Tego rodzaju zjawiska opisane w niniejszym artykule pozwalają na zrozumienie metodycznego podejścia do procesu projektowania rur, w szczególności w aspekcie zgniatania i rozrywania rur o średnicy >13⅜″ i cienkiej ściance (w IV reżimie obciążeń). Nie znaczy to, że wytrzymałość rur na rozrywanie nie jest istotną kwestią w projektowaniu rur, ale dotyczy to głównie otworów bardzo głębokich, natomiast zgniatanie i rozrywanie rur występuje w szczególnych (często nieprzewidywanych) przypadkach pełnego lub częściowego opróżnienia dla małej głębokości posadowienia rur. Artykuł oparty jest na bogatej literaturze fachowej, jak również na licznych badaniach, jakie prowadzi się w laboratoriach Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego w zakresie zaczynów cementowych i płuczek wiertniczych, a ponadto na stosownych doświadczeniach autorów artykułu – zarówno w zakresie projektowania zaczynów i nadzoru wykonania zabiegów cementowania, jak też projektowania i nadzoru prac związanych z realizacją wiercenia otworu, w tym zapuszczania i cementowania rur.
EN
Borehole design is a complex and multidimensional question in terms of the number of issues to be resolved in terms of mechanical, environmental and public safety engineering requirements. In this article contains a review and evaluation of chemical phenomena and processes (not always correctly evaluated) that occur during the preparation of cement slurry and after its displacement during the formation of the gel structure of cement and cement sheath. As a result of the chemically complicated process of slurry gelation, a new structure is formed, i.e. steel pipe – sheath (cement stone) – a rock which in a specific way produces a specific type of load and stress in the annular space, and thus influences changes in hydrostatic pressure distribution. Such phenomena described in this article allow to understand the methodical approach to the process of designing pipes, especially in the aspect of collapse and burst of pipes with big diameter >13⅜″ and thin wall (in the 4th load regime). This does not mean that the tensile strength of pipes is not an important issue in pipe design, but it mainly concerns very deep boreholes, while collapse and burst of pipes occurs in special (often unforeseen) cases of full or partial evacuation for shallow pipe foundation in the hole. The article is based on extensive professional literature, as well as on numerous tests carried out at Oil and Gas Institute – National Research Institute on different types of cement slurries and drilling muds, and, moreover, on the relevant experience of the authors of the article, both in the field of slurry design and supervision of cement operations, as well as in the design and supervision of works related to drilling of various types of boreholes, including cement job and running casing.
PL
Niniejszy artykuł przedstawia zagadnienia z zakresu technologii zaczynów uszczelniających dotyczące tzw. procesów żelowania (tzn. narastania statycznej wytrzymałości strukturalnej zaczynów cementowych). Na podstawie badań prowadzonych na świecie można stwierdzić, że tempo żelowania zaczynu cementowego odgrywa istotną rolę w procesie przeciwdziałania ewentualnym ekshalacjom gazowym z przestrzeni pierścieniowej. Po wtłoczeniu zaczynu do otworu (zwłaszcza w strefach, w których występują płytko zalegające horyzonty gazowe) może dojść do tzw. migracji (ekshalacji) medium złożowego (tj. niekontrolowanego wypływu np. gazu z przestrzeni pierścieniowej otworu wiertniczego). Do najważniejszych przyczyn powstawania zjawiska migracji gazu z płytkich horyzontów po zabiegu cementowania rur zalicza się niezdolność do utrzymania określonego nadciśnienia przez kolumnę wiążącego zaczynu cementowego oraz zbyt długie wiązanie zaczynu cementowego po zatłoczeniu go do otworu. Zaczyn cementowy po wytłoczeniu poza rury okładzinowe, będący początkowo w stanie płynnym, działa jako ciecz, wywołując określone ciśnienie hydrostatyczne na złoże, np. gazowe. Jednakże po pewnym czasie rozpoczyna się okres budowy statycznej wytrzymałości strukturalnej (SGS, ang. static gel strength), aż do momentu związania cementu. Proces budowy SGS, czyli tzw. żelowania zaczynu cementowego, powoduje ograniczenie zdolności do transmisji (przekazywania) ciśnienia hydrostatycznego na złoże. W Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym przetestowano szereg receptur zaczynów cementowych charakteryzujących się różnym czasem żelowania i wiązania. Zaczyny sporządzane były na bazie m.in.: trzech rodzajów lateksów (o symbolach L1, L2, L3), dwóch rodzajów szkła wodnego (o symbolach S1, S2), krzemionki bezpostaciowej (o symbolu CB), nanokomponentów na bazie n-SiO2 i n-Al2O3 (o symbolach NS i NA) oraz polimeru wielkocząsteczkowego (o symbolu GS). Do testowanych zaczynów stosowano przyspieszacz wiązania w różnych ilościach. Łącznie wykonano badania dla 18 receptur cementowych, co pozwoliło na wytypowanie optymalnych składów zaczynów o krótkich czasach żelowania i wiązania. Próbki zawierające w odpowiedniej koncentracji jeden z rodzajów lateksu, polimer GS, jak i te zawierające n-SiO2 i n-Al2O3 cechowały się bardzo korzystnym przebiegiem krzywej żelowania (narastania statycznej wytrzymałości strukturalnej). Ich czasy przejścia (TT, ang. transition time), odzwierciedlające przebieg żelowania, wynosiły od kilkunastu do kilkudziesięciu minut (co świadczy o ich wysokiej zdolności do zapobiegania migracji gazu z płytkich horyzontów produktywnych). Opracowane w INiG – PIB zaczyny cementowe, z uwagi na ich dobre parametry technologiczne, mogłyby znaleźć zastosowanie w procesie cementowania kolumn rur okładzinowych w otworach wiertniczych, zwłaszcza w przypadkach spodziewanego płytkiego zalegania poziomów gazonośnych.
EN
The article presents issues related to the sealing slurry technology concerning gelling processes (i.e., static built-up of gel strength of cement slurries). Based on research conducted around the world, it can be concluded that the rate of gelling of the cement slurry has an important role in the process of preventing possible gas exhalations from the annular space. After the cement slurry is pumped into the borehole (especially in zones with shallow gas horizons), the so-called migration (exhalation) of the formation medium (i.e. uncontrolled outflow of e.g. gas from the annular space) may occur. The most important caused of gas migration from the shallow horizons after casings cementation are the inability to maintain a certain overpressure by the column of the binding cement slurry and too long binding of the cement slurry after pumping into the borehole. The initially liquid cement slurry, when pumped out of the casing, acts as a liquid, creating a certain hydrostatic pressure on the deposit. e.g. gas. However, after some time, the period of building the static gel strength (SGS) starts until the cement sets. The SGS building process, i.e. gelling of the cement slurry, reduces the ability to transmit hydrostatic pressure to the reservoir. The Oil and Gas Institute – National Research Institute has tested a number of cement slurry formulations characterized by different gelling and bonding times. Slurries were made on the basis of three typed of latex with the symbols L1, L2, L3, two types of water glass with symbols S1, S2, amorphous silica with the symbol CB, nano-components based on n-SiO2 and n-Al2O3 with the symbols NS and NA as well as high-molecular weight polymer with the symbol GS. Different amounts of setting accelerator were used with the tested slurries. Tests were carried out for eighteen cement recipes, which made it possible to select the optimal compositions of slurries with short gelling and setting times. The samples containing one of the types of latex in the appropriate concentration, the GS polymer, as well as those containing n-SiO2 and n-Al2O3, showed a very advantageous course of the gelation plot (static build-up of gel strength). Their TT transition times, reflecting the course of gelation, ranged from several to several tens of minutes (which is a proof of high ability to prevent gas migration from shallow gas accumulations). The cement slurries developed at the Oil and Gas Institute – National Research Institute, due to their good technological parameters, could be used in the process of cementing casing strings.
PL
W artykule zamieszczono składy i wyniki badań receptur zaczynów cementowych zawierających od 1% do 5% nanotlenku glinu (n-Al2O3) przeznaczonych do uszczelniania kolumn rur okładzinowych w otworach wiertniczych o temperaturach dynamicznych około 30°C oraz około 60°C. Receptury cementowe opracowane zostały w INiG – PIB w Laboratorium Zaczynów Uszczelniających. Zaczyny posiadały gęstość od około 1820 kg/m3 do około 1920 kg/m3 , a ich sporządzanie odbywało się na bazie cementu portlandzkiego CEM I 42,5 oraz wiertniczego klasy G. Czasy wiązania oraz gęstnienia zaczynów dobierane były odpowiednio do danych warunków geologicznotechnicznych. W przypadku zaczynów badanych w niższej temperaturze zwracano szczególną uwagę na proces żelowania i wiązania receptur. Parametry te odgrywają bowiem kluczową rolę w ograniczaniu ewentualnych migracji gazowych z płytkich horyzontów produktywnych. Starano się zatem tak je dobierać, aby proces żelowania i wiązania receptur przebiegał w odpowiednio krótkim czasie. Z kolei w wyższych temperaturach skupiano się na opracowaniu receptur o podwyższonej wytrzymałości mechanicznej, a co za tym idzie – szczelnej i zbitej mikrostrukturze. Opracowano receptury o bardzo dobrych parametrach technologicznych, które po utwardzaniu (po 28 dniach hydratacji) posiadały bardzo wysokie wartości wytrzymałości na ściskanie, dochodzące nawet do 40 MPa. Tak wysokie wartości wytrzymałości są niezwykle trudne do uzyskania w przypadku zastosowania zaczynów konwencjonalnych. Potwierdzeniem wyjątkowo trwałej mikrostruktury próbek zawierających n-Al2O3 są również fotografie próbek zaczynów wykonane za pomocą mikroskopii skaningowej. Obok fotografii bazowych kamieni cementowych, na których widać pory, przedstawiono obrazy mikroskopowe próbek z dodatkiem 3% n-Al2O3, na których obserwujemy zbitą matrycę cementową, cechującą się bardzo małą przepuszczalnością. Ponadto próbki kamieni cementowych uzyskane z zaczynów z n-Al2O3 charakteryzowały się bardzo niską zawartością porów kapilarnych. Zdecydowaną większość ogólnej ilości porów stanowiły pory o najmniejszych rozmiarach (poniżej 100 nm). Poprawa szczelności matrycy cementowej poprzez zredukowanie do wartości około 1,5% porów mogących transportować medium złożowe sprawia, że receptury zaczynów cementowych zawierających dodatek nanotlenku glinu mogą być z powodzeniem używane podczas uszczelniania kolumn rur okładzinowych w otworach wiertniczych wykonywanych na złożach węglowodorów.
EN
The article presents compositions and test results for cement slurries formulations containing from 1% to 5% of nano aluminum oxide (n-Al2O3) for sealing the casing columns in boreholes with dynamic temperatures of about 30°C and 60°C. Laboratory tests of cement slurries were carried out at Oil and Gas Institute - National Research Institute. The densities of tested slurries ranged from 1,820 to 1,920 kg/m3 , and were prepared on the basis of Portland cement CEM I 42,5 and class G oil well cement. Cement slurries had thickening times properly matched to given geological and technical conditions. For slurries tested at lower temperatures, particular attention was paid to the gelling and setting process of cement slurries. These parameters play a key role in limiting possible gas migrations from shallow gas accumulations. They were selected so that the gelling and setting process could be carried out in a sufficiently short time. At higher temperatures, the focus was on developing cement slurry formulations with increased mechanical strength and a tight and compact microstructure. Cement slurry formulations with very good technological parameters were developed, which after curing (after 28 days of hydration) had very high values of compressive strength, reaching up to 40 MPa. Such high compressive strength values are extremely difficult to obtain with conventional cement slurries. Scanning electron microscope images of cement samples also confirm extremely compact microstructure of the samples with nano-SiO2. In addition to the photographs of base cement stones, which show pores, microscopic images of samples with the addition of 3% n-Al2O3 are presented, where we observe a compact cement matrix with very low permeability. Furthermore, samples containing n-Al2O3 were characterized by a very low content of capillary pores. Pores of the smallest size (below 100 nm) constituted the vast majority of the total number of pores. Improvement of cement matrix tightness by reducing the amount of pores that can transport the reservoir medium to approx. 1.5% means that cement slurry formulas containing nano aluminum oxide can be successfully used in the process of cementing casing strings in boreholes.
5
PL
Wykazano doświadczalnie jakie są główne czynniki decydujące o wpływie dwóch tlenków metali ciężkich: ołowiu oraz wanadu na wiązanie cementu portlandzkiego. Głównymi czynnikami decydującymi o wpływie tych metali są: a) stężenie jonów siarczanowych w fazie ciekłej zaczynu cementowego, b) szybkość rozpuszczania się metali ciężkich w fazie ciekłej zaczynu, c) postać w jakiej dodawane są metale ciężkie w przypadku występowania różnicy w szybkości rozpuszczania metalu i jego tlenku. Gdy stężenie jonów siarczanowych jest małe w pierwszych 20 minutach od dodania wody, szybko rozpuszczający się ołów hamuje tworzenie się warstewki ettringitu na ziarnach C3A, co powoduje szybkie wiązanie „ettringitowe”. W przypadku małej szybkości rozpuszczania metali i ich niewielkiego stężenia w roztworze, warstewka ettringitu tworzy się na kryształach C3A i metale te nie mają praktycznie żadnego wpływu na początek wiązania. Tak jest w przypadku wanadu, natomiast ma on opóźniający wpływ na koniec wiązania.
EN
It was proved experimentally in the work what are the main factors governing the influence of two heavy metals: lead and vanadium on the setting of Portland cement. The main factors governing the behaviour of these metals are as follows: a) concentration of sulphate ions in the cement paste liquid phase, b) the rate of dissolution of heavy metals in this liquid phase, c) the form of heavy metals addition, in the case when there is a high difference in the rate of dissolution between metal and its oxide. When the concentration of sulphate is low in the first 20 minutes after addition of mixing water the quick dissolution lead is preventing the formation of ettringite layer on C3A and the quick “ettringite” setting takes place. When the metals have low dissolution rate and low concentration in solution the ettringite layer is formed on C3A crystals and these metals have practically no influence on the initial setting time. There is the case of vanadium, but it has retarding effect on the final setting time of cement.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.