Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cellular automata finite element method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Equal channel angular pressing (ECAP) is one of the most popular methods of obtaining ultrafine grained (UFG) metals. However, only relatively short billets can be processed by ECAP due to force limitation. A solution to this problem could be recently developed incremental variant of the process, so called I-ECAP. Since I-ECAP can deal with continuous billets, it can be widely used in industrial practice. Recently, many researchers have put an effort to obtain UFG magnesium alloys which, due to their low density, are very promising materials for weight and energy saving applications. It was reported that microstructure refinement during ECAP is controlled by dynamic recrystallization and the final mean grain size is dependent mainly on processing temperature. In this work, cellular automata finite element (CAFE) method was used to investigate microstructure evolution during four passes of ECAP and its incremental variant I-ECAP. The cellular automata space dynamics is determined by transition rules, whose parameters are strain, strain rate and temperature obtained from FE simulation. An internal state variable model describes total dislocation density evolution and transfers this information to the CA space. The developed CAFE model calculates the mean grain size and generates a digital microstructure prediction after processing, which could be useful to estimate mechanical properties of the produced UFG metal. Fitting and verification of the model was done using the experimental results obtained from I-ECAP of an AZ31B magnesium alloy and the data derived from literature. The CAFE simulation results were verified for the temperature range 200-250 °C and strain rate 0.01-0.5 s-1; good agreement with experimental data was achieved.
PL
Równokanałowe wyciskanie kątowe (equal channel angular pressing – ECAP) jest jedną z najpopularniejszych metod otrzymywania ultra drobnoziarnistych metali. Jednak z powodu dużych sił potrzebnych do przeprowadzenia procesu, tylko relatywnie krótkie wstępniaki mogą być wyciskane. Rozwiązaniem problemu może być opracowany inkrementalny wariant tego procesu, tzw. I-ECAP. Ze względu na to, że przy użyciu I-ECAPu mogą być przetwarzane nieskończenie długie elementy, może on znaleźć szerokie zastosowanie w praktyce przemysłowej. Mechanizm rozdrobnienia ziarna podczas przeróbki plastycznej stopów magnezu różni się znacząco od metali takich jak aluminium lub miedź i ich stopy. Ostatnie wyniki wskazują, że mechanizm rozdrobnienia ziarna podczas ECAPu jest sterowany przez proces rekrystalizacji dynamicznej, a ostateczna średnia wielkość ziarna jest zależna głównie od temperatury procesu. W niniejszej pracy sprzężona metoda automatów komórkowych i elementów skończonych (cellular automata finite element – CAFE) została wykorzystana do opisu rozwoju mikrostruktury podczas czterech przejść ECAPu i jego inkrementalnego wariantu, I-ECAPu. Dynamika zmian w przestrzeni automatów komórkowych jest determinowana przez reguły przejścia, których parametrami są odkształcenie, prędkość odkształcenia oraz temperatura – uzyskane z symulacji metodą elementów skończonych. Model zmiennej wewnętrznej opisuje wzrost całkowitej gęstości dyslokacji i przekazuje tę informację do przestrzeni automatów komórkowych. Opracowany model CAFE oblicza średnią wielkość ziarna oraz generuje cyfrowy obraz mikrostruktury, co może być przydatne w wyznaczaniu własności mechanicznych otrzymanego materiału. Dopasowanie oraz weryfikacja modelu zostały wykonane przy wykorzystaniu wyników uzyskanych z przeprowadzonego procesu inkrementalnego ECAPu stopu magnezu AZ31B oraz danych literaturowych. Wyniki symulacji metodą CAFE zostały zweryfikowane dla zakresu temperatur 200-250°C oraz prędkości odkształcenia 0.01-0.5 s-1; uzyskano bardzo dobrą zgodność z wynikami eksperymentalnymi.
2
Content available remote Metoda analizy wieloskalowej w zastosowaniach inżynierskich.
PL
Zaprezentowano dynamicznie rozwijające się nowe metody obliczeniowe, umożliwiające opis zjawisk zachodzących w materiale, niemożliwych do przewidywania tradycyjnymi metodami modelowania. Metody Automatów Komórkowych (Cellular Automata - CA), Monte Carlo (MC) czy Dynamiki Molekularnej (Molecular Dynamics - MD) mogą być wykorzystane do modelowania procesów w skali mikro, ze szczególnym uzględnieniem zjawisk nieciągłych, a także do tworzenia powiązań między procesami zachodzącymi w skali mikro i zachowaniem się materiału w skali makro. Omówiono przykłady tworzenia i zastosowania metod analizy wieloskalowej ze szczególnym uwzględnieniem metody CAFE (Cellular Automata Finite Element).
EN
Presented are new, dynamically developing calculation methods providing for description of the phenomena occurring inside material, which could not be outlined by means of conventional methods. Discussed are examples how the multiple scale analysis methods were created and applied with particular attention paid to CAFE (Cellular Automata Finite Element).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.