Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  catholyte
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the established technologies, the use of classic depressants of pyrite, such as lime represents one of the main problems in the flotation of gold-bearing copper (Cu) ores. Lime addition leads to the depression of the noble metals - gold (Au) and silver (Ag) that end up in tailings. Thus, the operator incurs economic losses. The current paper presents research aimed at replacing in flotation of copper pyrite ore, bearing gold and silver, the classical depressor lime with catholyte, i. e. with solution obtained during the electrolysis of water (pure or aqueous solutions) using a diaphragm electrolyser. Data from the conducted research show an increase in the content of precious metals in the obtained copper concentrate - from 148. 04 g/Mg Au and 112. 8 g/Mg Ag achieved by classical process to 216.45 g/Mg Au and 174.03 g/Mg Ag obtained by the proposed treatment. At the same time the Cu recovery increased by 3 % and the grade of Cu concentrate was 27.5 % Cu (compared to 16.2 % in the classical process). It seems that the main parameter influencing the selection separation process is the catholyte pH value.
EN
In this work, the processes of electrochemical processing of sodium chloride solutions with the production of iron (III) chloride and alkali in a three-chamber electrolyzer with MA-41 anion-exchange membrane and MK-40 cation-exchange membrane were investigated. The conditions for the removal of sodium chloride from water in a three-chamber electrolyzer using an iron anode were determined depending on the anode current density and the reaction of the medium in the anode region. The parameters of the process of concentrating iron chloride in the anode region were established at relatively low concentrations of sodium chloride solution. It was shown that during the electrolysis of a sodium chloride solution with a concentration of 370 mg-eq/dm3 at a current of 0.2 A in a three-chamber electrolyzer with an iron anode, an iron chloride solution is formed in the anolyte at pH < 4.9. The rate of concentration of NaOH to catholyte and FeCl3 to anolyte increased along with the current density. It was found that in order to increase the concentration of iron (III) chloride in the anolyte at relatively low concentrations of sodium chloride solution, it is advisable to gradually renew the demineralized solutions in the working chamber.
EN
In this study, the processes of electrochemical oxidation of ammonia in a two-chamber electrolyzer with anion exchange membrane MA-41 were investigated. An estimation of the efficiency of the process of oxidation of ammonia, depending on the chemical composition of the initial solution of anolyte and catholyte, current density and time of electrolysis was carried out. It was shown that the oxidation of ammonia in the anode chamber passes quickly and is accompanied by a significant decrease in pH due to the formation of nitrogen dioxide and nitrates. At the same time, the current output and the electrical conductivity of the dilute solutions was rather low. The effect of chlorides on the process of electrolysis was investigated. It was shown that the presence of chlorides in the anolyte catalyzes the processes of oxidation of ammonia. An increase in the concentration of chlorides in the anolyte increases output and reduces electricity consumption. The presence of chlorides in the catholyte does not accelerate oxidation. The presence of sulfates, both in the anolyte and in the catholyte, slows down the process of oxidation of ammonia as a result of the oxidation of sulfates to persulfates, which are quite passive to ammonium ions. At the same time, electricity consumption increases.
EN
A number of environmentally hazardous substances are used in the process of flax roving preparation for spinning. An alternative to them can be the use of electrochemical activated aqueous solutions. However, the metastability of such solutions requires time tracking of their properties’ relaxation. This article presents experimental data on the relaxation of relevant solutions that can be used for a well-founded selection of flax roving treatment procedures to ensure a required quality of flax yarn. It has been experimentally proven that the use of ECA solutions for preparing rovings for spinning allows to obtain high quality yarn as well as significantly reduce wastewater pollution and improve the environmental situation in the places of their emissions.
PL
W procesie przygotowywania przędzy lnianej do przędzenia stosuje się wiele niebezpiecznych dla środowiska substancji. Alternatywą dla nich może być zastosowanie elektrochemicznie aktywowanych roztworów wodnych. Jednak metastabilność takich roztworów wymaga śledzenia czasu relaksacji ich właściwości. W artykule przedstawiono dane eksperymentalne dotyczące roztworów. W celu zapewnienia wymaganej jakości przędzy lnianej uzyskane dane mogą znaleźć zastosowanie podczas wyboru procedur obróbki niedoprzędu. Udowodniono eksperymentalnie, że zastosowanie rozwiązań ECA do przygotowania niedoprzędów pozwala uzyskać przędzę wysokiej jakości, a także znacznie zmniejszyć zanieczyszczenie ścieków i poprawić sytuację środowiskową w miejscach ich emisji.
EN
Electricity generation from the readily biodegradable organic substrate (glucose) accompanied by decolorization of azo dye was investigated using a two-chamber microbial fuel cell (MFC). Batch experiments were conducted to study the effect of dye and substrate concentration on MFC performance. Electricity generation was not signifi cantly affected by the azo dye at 300 mg/L, while higher concentrations inhibited electricity generation. The chemical oxygen demand (COD) removal and decolorization of dye containing wastewater used in the MFC were studied at optimum operation conditions in anode and cathode, 57% COD removal and 70% dye removal were achieved. This study also demonstrated the effect of different catholyte solutions, such as KMnO4 and K2Cr2O7 on electricity generation. As a result, KMnO4 solution showed the maximum electricity generation due to its higher standard reduction potential.
PL
W pracy przedstawiono opis krystalizacji masowej wodorowęglanu potasu w procesie karbonizacji katolitu z elektrolizy wodnego roztworu chlorku potasu w oparciu o analizę rozkładu rozmiarów kryształów. Sporządzono histogramy unormowanego rozkładu liczbowego kryształów KHCO33 zawiesiny). Zaproponowano metodę produkcji potażu z roztworów po elektrolizie chlorku potasu.
EN
This work describes mass crystallization of potassium bicarbonate in the carbonization process of catholyte from the electrolysis of potassium chloride solution on the basis of crystal size distribution analysis. Histograms of the normalized numbers distribution of KHCO3 crystals have been prepared and the relationship Mi o = f (t) (where: Mi o - number of crystals in 1m3 suspension) has been presented. The method of potash production from solution after electrolysis of potassium chloride has been proposed.
PL
Węglan potasu jest jednym z najważniejszych substancji nieorganicznych wykorzystywanych w przemyśle. Najważniejszym odbiorcą tego produktu jest przemysł szklarski (44% podaży), natomiast pozostałe 56% przypada na inne gałęzie przemysłu m.in. przemysł spożywczy, farmaceutyczny oraz włókienniczy. W pracy przedstawiono możliwość wykorzystania katolitu z elektrolizy przeponowej wodnego roztworu chlorku potasu do produkcji węglanu potasu. Proponowane rozwiązanie pozwala zagospodarować nadmiar tego półproduktu w przemyśle elektrochemicznym. Przytoczono również ilościowy opis krystalizacji masowej wodorowęglanu potasu.
EN
The potassium carbonate is one of the most important inorganic substance used in the industry. The large buyer of this product is the glass industry (44% of supply), however remaining 56% falls onto others branches of industry i.e. food, pharmaceutical and textile industry. The possibility of using of catholyte coming from the diaphragm electrolysis of potassium chloride aqueous solution in production of potassium carbonate has been presented in this paper. The proposed solution allows to utilize of excess of this products in the electrochemical industry. The quantitative description of mass crystallization of potassium bicarbonate was quoted also in this work.
PL
Rosnącemu zapotrzebowaniu na chlor z procesu elektrolizy chlorku sodu towarzyszy problem zagospodarowania katolitu. W pracy przedstawiono możliwości wykorzystania ługu w przemyśle sodowym. Katolit stosuje się do produkcji: sody kalcynowanej, wodorowęglanu sodu oraz hydratów węglanu sodu. Dodatkowo katolit znalazł zastosowanie w procesie regeneracji amoniaku z filtratu. Rozwiązanie to pozwala na zagospodarowanie głównego produktu ubocznego w przemyśle sodowym, jakim jest zawiesina podestylacyjna.
EN
An increasing demand for chlorine from sodium chloride electrolysis is accompanied by the problem of catholyte utilization. Possibilities of using of soda lye in the soda industry has been presented in this paper. Catholyte is used in production of soda-ash, sodium bicarbonate and soda hydrates. Catholyte is applied additionally in the process of regeneration of ammonia from filtrate. This solution allows to utilizate the main by-product in the soda industry- i.e. distillation suspension.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.