Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  casting temperature
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Consecutive casting of bimetallic applies consecutive sequences of pouring of two materials into a sand mold. The outer ring is made of NiHard1, whereas the inner ring is made of nodular cast iron. To enable a consecutive sequence of pouring, an interface plate made of low carbon steel was inserted into the mold and separated the two cavities. After pouring the inner material at the predetermined temperature and the interface had reached the desired temperature, the NiHard1 liquid was then poured immediately into the mold. This study determines the pouring temperature of nodular cast iron and the temperature of the interface plate at which the pouring of white cast iron into the mold should be done. Flushing the interface plate for 2 seconds by flowing nodular cast iron liquid as inner material generated a diffusion bonding between the inner ring and interface plate at pouring temperatures of 1350°C, 1380°C, and 1410°C. The interface was heated up to a maximum temperature of 1242°C, 1260°C, and 1280°C respectively. The subsequent pouring of white cast iron into the mold to form the outer ring at the interface temperature of 1000°C did not produce a sufficient diffusion bonding. Pouring the outer ring at the temperature of 1430°C and at the interface plate temperature of 1125°C produced a sufficient diffusion bonding. The presence of Fe3O2 oxide on the outer surface of the interface material immediately after the interface was heated above 900⁰C has been identified. Good metallurgical bonding was achieved by pouring the inner ring at the temperature of 1380°C, interface temperature of 1125°C and then followed by pouring of the outer ring at 1430⁰C and flushing time of 7 seconds.
2
Content available remote Influence of the casting temperature on dental Co-base alloys properties
EN
Purpose: The goal of the study is to find the relationship between the value of casting temperature on corrosion resistance, hardness and mechanical properties of two Co-Cr-Mo alloys Remanium 2000+ and Wirobond LFC used in dentistry. Design/methodology/approach: Realized investigations starts from preparing the mould and cast two CoCrMo alloys in 1430, 1440, 1450 and 1460°C. Electrochemical corrosion research were made in water centre which simulated artificial saliva environment, by recording of anodic polarization curves with use the potentiodynamic methods. The compression strength, yield strength and unit shortening was evaluated during the static compression tests on multi-role testing machine MTS. Hardness test were obtained by use the microhardness FM ARS 9000 FUTURE TECH Vickers methods with load 1 kg. Findings: The manufacturing conditions for the Co-Cr-Mo alloys are one of the possible method which effects in increase or decrease of the safety factor in construction. Realized research of the increasing casting temperature about 10-20°C in regard to conditions offered by producer was found that hardness and corrosion resistance change only in small value, while corrosion current of samples casted from 1460°C increase by one order of magnitude to casting from 1430°C. Increase or decrease casting temperature results in decrease the mechanical properties yield strength and compression strength for both alloys. Practical implications: Scientific research of the cobalt alloys used on the dentures confirmed that casting temperature as one of the condition during the manufacturing influence on the most important useful properties like corrosion resistance, strength of the prosthetic constructions and machinability of the CoCrMo alloys. Originality/value: The paper presents an effect of correct selection the casting temperature, on the most important properties of CoCrMo alloys use in dental engineering.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.