Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cast-in-place
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thermophysical properties of frozen soil have a great influence on the quality of cast-in-place concrete piles. In this paper, the embedded concrete temperature monitoring system is used to test the variation law of the concrete temperature during the construction of the bored pile. Thermophysical properties of permafrost around piles are tested. Based on the theory of three-phase unsteady heat conduction of soil, the influence of specific heat capacity, thermal conductivity, thermal diffusivity, and latent heat of phase transformation on the temperature change of a concrete pile is systematically studied. The thermal parameter is obtained which exerts the most significant influence on the temperature field. According to the influence degree of frozen soil on pile temperature, the order from high to low is thermal conductivity, thermal diffusivity, latent heat of phase change, and specific heat capacity. The changes in pile wall temperature caused by the change of these properties range between 2.60–10.97◦C, 1.49– 9.39◦C, 2.16–2.36◦C, and 0.24–3.45◦C, respectively. The change percentages of parameters vary between 35.77–47.12%, 12.22–40.20%, 12.46–32.25%, and 3.83–20.31%, respectively. Therefore, when designing and constructing concrete foundation piles, the influence of the thermal conductivity of frozen soil on concrete pile temperature should be considered first. The differences between the simulated and measured temperature along the concrete pile in the frozen soil varying with the respective thermal properties are: –2.99– 7.98◦C, –1.89–4.99◦C, –1.20–1.99◦C, and –1.76–1.27◦C. Polyurethane foam and other materials with small thermal conductivity can be added around the pile to achieve pile insulation.
EN
Three equivalent exterior precast concrete beam-column (PCBC) connections have been investigated in this study in orderto analyze the effect of steel fiber reinforced concrete (SFRC) as cast-in-place (CIP) on the seismic performance of the PCBC connection. The connection was designed as a ductile connection for a moment-resisting frame and consists of a precast U-beam, precast column with corbel, interlocking bars, and CIP-concrete to connect the precast beam to precast column. The volume fractions of steel fiber incorporated within the CIP-concrete were 0%, 0.5% and 1%. A quasi-static load was applied vertically to the beam tip of the PCBC specimen. The results showed that the steel fibers contained within the CIP-concrete provided 2% increase of the maximum load, 17.7% increase of the energy dissipation, and increase in the joint stiffness of the PCBC connection. The steel fibers delayed the onset of cracking and slowed down the crack propagation, resulting in shorter cracks in the joint core of PCBC specimen, which correlates well with the deflection-hardening characteristic found from the modulus of rupture test.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.