Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  carboniferous
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available The first trigonotarbid arachnid from Ukraine
EN
The extinct arachnid order Trigonotarbida Petrunkevitch, 1949 is reported here for the first time from Ukraine. The material consists of an opisthosoma preserved in ventral view from the upper Carboniferous (lower Moscovian; Paralegoceras–Eowellerites ammonoid zone) of the Gorlivka locality in the Donets Basin, eastern Ukraine. Formal assignment to a family or genus is difficult, but the preserved ventral anatomy is consistent with a member of the families Aphantomartidae Petrunkevitch, 1945, Kreischeriidae Haase, 1890 or Eophrynidae Karsch, 1882. It is noteworthy for expanding the known distribution of trigonotarbids in Europe and is only the second Palaeozoic arachnid to be formally described from Ukraine; the other being the carapace of a whip scorpion (Thelyphonida Latreille, 1804) from Lomovatka in the Luhansk Region, also in the Donets Basin.
EN
Inconsistency in the approach to the corals included by different authors in the families Tachylasmatidae Grabau, 1928 and Pentaphyllidae Schindewolf, 1942 are discussed in the context of their relationship vs homeomorphy to the Family Plerophyllidae Koker, 1924. Following Schindewolf (1942), the pentaphylloid or cryptophylloid early ontogeny, typical of the former two families, is contrasted with the zaphrentoid ontogeny typical of the latter family. Comprehensive analysis proves the independent taxonomic position of the Suborder Tachylasmatina Fedorowski, 1973. The taxa described herein support this idea. The relationship of the two families: Tachylasmatidae and Pentaphyllidae within the framework of this suborder are suggested. A new genus left in open nomenclature (represented by a single specimen) and three new species, Pentaphyllum sp. nov. 1, ? Pentaphyllum sp. nov. 2 and Gen. et sp. nov. 1 are described from lower Bashkirian deposits.
EN
The Family Neokoninckophyllidae and its type genus Neokoninckophyllum Fomichev, 1939 (type species: N. tanaicum Fomichev, 1939) are discussed and emended. In addition, the genera Orygmophyllum Fomichev, 1953 and Yuanophylloides Fomichev, 1953, originally included in the Families Campophyllidae Wedekind, 1922 and Lophophyllidae Grabau, 1928, respectively, are emended as well and transferred to the Neokoninckophyllidae. Two early Bashkirian species, viz. Yuanophylloides rectus (Vassilyuk in Aizenverg et al., 1983) and Y. inauditus (Moore and Jeffords, 1945), and the Moscovian Neokoninckophyllum sp. nov. are described on the basis of new collections from the Donets Basin. Neokoninckophyllum tanaicum, Yuanophylloides gorskyi Fomichev, 1953 (both Moscovian in age) and Y. cruciformis Fomichev, 1953 (latest Bashkirian), are redescribed on the basis of peels taken from Fomichev’s (1953) type specimens. Derivation of the Family Neokoninckophyllidae from the Subfamily Dibunophyllinae Wang, 1950 is postulated and phylogenetic links within the former are hinted at. The occurrence of Yuanophylloides inauditus in both the Donets Basin and the Western Interior Province of North America points to marine communication between those areas during the Bashkirian. The slightly earlier appearance of the oldest neokoninckophyllids in the Donets Basin, in comparison to North America (i.e., R1 vs R2 ammonoid biozones), documents the common roots and monophyletic development of the Neokoninckophyllidae in both areas.
4
EN
The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably representing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian).
EN
Campyloprion Eastman, 1902 is a chondrichthyan having an arched symphyseal tooth whorl similar to that of Helicoprion Karpinsky, 1899, but less tightly coiled. The holotype of Campyloprion annectans Eastman, 1902, the type species of Campyloprion, is of unknown provenance, but is presumed to be from the Pennsylvanian of North America. Campyloprion ivanovi (Karpinsky, 1922) has been described from the Gzhelian of Russia. A partial symphyseal tooth whorl, designated as Campyloprion cf. C. ivanovi, is reported from the Missourian Tinajas Member of the Atrasado Formation of Socorro County, New Mexico, USA. Partial tooth whorls from the Virgilian Finis Shale and Jacksboro Limestone Members of the Graham Formation of northern Texas, USA, are designated as Campyloprion sp. Two partial tooth whorls from the Gzhelian of Russia that were previously referred to C. ivanovi are designated as Campyloprion cf. C. annectans. The age of Toxoprion lecontei (Dean, 1898), from Nevada, USA, is corrected from the Carboniferous to the early Permian. An alternative interpretation of the holotype of T. lecontei is presented, resulting in a reversal of its anterior-to-posterior orientation. The genera Helicoprion, Campyloprion, and Shaktauites Tchuvashov, 2001 can be distinguished by their different spiral angles.
EN
Intense program of shale gas prospecting in the territory of Poland is currently on going. Among the steps towards better examination of dispersed organic matter (DOM) in clastic Carboniferous rocks of the basement of the Fore-Sudetic Homocline are petrologic studies. The paper provides data on the DOM composition, kerogen type determination, and identification of thermal maturity degree of Carboniferous rocks in the basement of the Fore-Sudetic Homocline. In general, organic matter from the Carboniferous rocks is represented only by vitrinite and inertinite. Such composition of DOM permits to define it as humic organic matter typical for kerogen type III. Carboniferous rocks display a high and very high degree of thermal maturity, expressed by a wide range of vitrinite reflectance values (from below 1.50% to above 5.50%).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.