Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  carbon stable isotopes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The quantity, genetic type and maturity of organic matter dispersed in the Kimmeridgian strata of the central part of the Polish Lowlands were determined on the basis of results of Rock-Eval, stable carbon isotope composition of bitumen, their fractions and kerogen, biomarker distribution in saturate and aromatic hydrocarbon fraction, elemental composition of kerogen, vitrinite reflectance and maceral composition analyses of 225 rock samples collected from 32 boreholes. The study was conducted separately for Lower and Upper Kimmeridgian rocks in the Szczecin-Miechów and Kościerzyna-Puławy synclinoriums and Mid-Polish Anticlinorium. The best source rocks with TOC up to 6.8 wt.%, were found in the vicinity of Gostynin in the Mid-Polish Anticlinorium. Generally, the Upper Kimmeridgian strata are fair and good potential source-rocks whereas the Lower Kimmeridgian strata have much lower hydrocarbon potential. Gas-prone, terrigenous Type-III kerogen predominates in the Lower Kimmeridgian strata. The contribution of oil-prone, marine Type-II kerogen increases in the Upper Kimmeridgian rocks. In the whole profile, only low-sulphur kerogen was recorded, although the situation, when high-sulphur Type-IIS kerogen was mixed with re-worked, non-generative Type-IV kerogen supplied to the sedimentary basin with rocks from eroded land, cannot be excluded. Sedimentary conditions of organic material were variable, usually anoxic and suboxic with domination of siliclastic material in mineral matrix. The maturity of the dispersed organic matter refers mostly to the final phase of the microbial process, or to the initial phase of the low-temperature thermogenic process (oil window). The most mature rocks, corresponding up to 0.75% in the vitrinite reflectance scale, were recognised in the deepest buried parts of the basin (axial part of the Mogilno-Łódź Segment of the Szczecin-Miechów Synclinorium). The most prospecting source rocks were recognised in this area.
EN
Ammonite distribution patterns and carbon and oxygen stable isotopes from the Lipnik-Kije (Poland) and Dubovcy (Ukraine) sections allow us to propose a model of sea water paleo-circulation in central Europe for the Coniacian-Santonian interval. The tectonic evolution of the south-eastern part of Poland, and expansion of the Krukienic Island areas, appears to have been one of the most important factors affecting paleotemperatures and the distribution of ammonite faunas in the shallow, epicontinental sea in this part of Europe. In the Lipnik-Kije section, low-latitude Tethyan ammonites, especially of the genera Nowakites, Parapuzosia and Saghalinites, are mixed with the cold water loving ammonite genus Kitchinites in the Lower Santonian. In the Dubovcy section (western Ukraine), Tethyan ammonites disappear abruptly in the earliest Santonian, giving place to temperate ammonites of the Kitchinites group in the early Early Santonian and to Boreal belemnites of the genus Gonioteuthis in the Middle and Late Santonian. Despite evidence for the effects of diagenesis in both sections, bulk-rock δ18O records from the limestones support higher seawater paleotemperatures in the Polish sea and cooler conditions in the western Ukraine. The proposed paleo-circulation model and paleotemperature distribution across Europe is supported independently by changes in faunal and nannoflora evidence (ammonites, foraminifera and nannoplankton), and rather unexpectedly with the bulk δ18O data. These data allow the recognition of the end-Coniacian–Early Santonian cooling event, resulting from cold currents flowing from the north, which is traceable, with different magnitude, in several European sections. Facies changes in both sections are related to the input of terrigenous material, and linked to Subhercynian tectonic movements which affected the eastern (Ukrainian) and central (Holy Cross) segment of the Mid Polish Trough at different times. Uplift and sediment input moved westwards through time. Clastic input is detectable at the Coniacian–Santonian boundary in the Ukrainian segment. Similar facies changes reached the Holy Cross segment in Poland distinctly later, somewhen in the Middle Santonian. It is likely that tectonics together with paleo-circulation changes markedly restricted or even cut-off the western Ukraine area from Tethyan ocean influences in the Early Santonian.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.