This paper presents a study on prestressing concrete structures with Carbon Fibre Reinforced Polymer (CFRP) tendons. It is an alternative to conventional steel prestressing materials, which distinguishes itself by complete resistance to corrosion, good tensile and fatigue strength and better performance in time under loading. Mechanical properties and examples of prestressing structures with composite tendons are briefly described. The article is focused mainly on describing procedures given by available codes and guidelines. Finally, calculations for an example of a concrete beam prestressed with CFRP tendons are conducted and the results and differences between both codes are presented and summarized.
This paper presents the microstructural and fractographic analysis of damage in carbon/epoxy composites after static and fatigue strength (shear) tests at elevated temperature. The microstructural tests and fractographic analysis confirmed the complexity of degradation process and degradation mechanisms in composite structure. Multiple cracks, delaminations and interface degradation between fibre and matrix have been observed. The fracture analysis indicate the occurrence of characteristic failure area: matrix river lines, matrix rollers, fractures and reinforcing fibres imprints. The interface, except of the type of components and their features, is the principal factor determining the properties of composite material. The quality of the bonding between the reinforcing phase and matrix, mechanism of composite cracking as a whole as well as cracks of individual components are directly affected by the interface.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.