Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  carbides of TiC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The morphology of TiC carbides produced in surface layers of carbon steel castings
EN
The study presents the results of investigations of the process of in situ fabrication of TiC carbides in a surface layer of carbon steel casting. Carbides were produced by SHS reaction taking place between the substrates deposited on mould surface and cast molten alloy. The thickness of the obtained layer was up to 700 μm, and the size of carbides was comprised in a range of 1-10μm. During alloy solidification in mould, a thermal analysis was carried out; its results were used in evaluation of the morphology of the obtained titanium carbides. It has been found that, at the moment of reaction, the temperature of the reaction layer and the temperature of the central part of casting differed by 93 K. This difference has changed the morphology of the obtained carbides. In the region of reaction layer, where the temperature amounted to 1955 K, the crystals assumed an oval and coagulated shape, while at the layer-casting interface, TiC carbides in the form of cuboids were formed.
2
Content available remote Fabrication of in situ composite layer on cast steel
EN
The study describes the technology of fabrication of composite layers in cast steel reinforced with titanium carbides. In the process under discussion, the reinforcing TiC phase is formed in situ from the substrates deposited on mould cavity, where the said substrates under the effect of heat supplied by molten metal poured into mould (1823K) undergo a synthesis in the SHS reaction. An outcome of this process is the formation, within the casting surface, of a layer from 550 to 1200μm thick. Carbides produced in this synthesis have the size from 0,5 to 20μm and a non-typical spheroidal shape. The hardness of the produced layer examined in function of the distance from the casting surface is from 700 to 1134 HV, and is determined by volume fraction of the reinforcing TiC phase. To better document the type of microstructure obtained in the produced material, metallographic and structural examinations were carried out using the method of scanning electron microscopy (SEM), X-ray microanalysis (EDS/EDX), and phase analysis (XRD). To check the mechanical properties of the examined material, hardness was measured by the Vickers test.
3
Content available remote Cast in situ composites of Ni3Al / MeC type
EN
In this work a new method SHSB (Self- Propagating High-Temperature Synthesis in Bath) has been used to produce of five new composites i.e.Ni3Al / TiC, Ni3Al / WC, Ni3Al / Zr, Ni3Al / NbC and Ni3Al /TaC (in the amount of carbides of 5% volume fraction.) The composites fabricated by the 'in situ' process, with the Ni3Al compound used as a matrix material and the reinforcement composed of Ti, W, Zr, Nb or Ta carbide particles were made. Fabrication of composites was carried out in Balzers vacuum furnace and conducted the process in the atmosphere of argon at a negative gas pressure of 0,5 MPa. After melting down of aluminium and completion of the exothermic reaction between mixing powder of carbon, aluminium, titanium or tungsten, zirconium, niobium and tantalum, boron in the form of Al-B 3% master alloy was introduced to alloy melt. From thus fabricated composites, the specimens were prepared for metallographic examinations, and scanning topographic analysis. It have been shown that the size of TiC and TaC particles was comprised in a range of up to 10 [...]. The NbC and ZrC carbides were characterised by the dimensions of up to 20 [...], while WC carbides were the largest (up to 80 [...].) In all the examined composites, the X-ray microanalysis revealed total absence of reaction products at the matrix reinforcing particle interface. The SHSB process eliminated the fundamental problem - reactivity of the matrix-particle system, observed in the ex situ methods .
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.