Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  calcium carbide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article considers the results of studying the thermodynamic computer modeling of the interaction of phosphorite (Karatau basin, Kazakhstan) with carbon and coke performed using the HSC-10 software package and electric smelting of the phosphorite with coke and steel shavings in an arc furnace. The modeling allowed us to determine the equilibrium extraction degrees of phosphorus into gas (Р2, Р4), silicon into ferroalloy in the form of iron silicides (FeSi2, FeSi, Fe3Si, Fe5Si3, Si) and calcium into CaС2. At temperatures above 1500 °C, regardless of the amount of iron, the extraction degree of phosphorus into gas is more 99%. The resulting ferroalloy contains 21.2-23.8% of Si, 1.6-2.8% of Al; the calcium carbide has a capacity of 288-325 dm3/kg. The extraction degree of silicon into the alloy was 89.8%, calcium in CaC2 – 72.5%, phosphorus into gas – 99.4%. The ferroalloy, formed at the electric smelting of the Chulaktau phosphorite together with coke and steel shavings and containing 24.9-29.8% of Si, is FS25 grade ferrosilicon, and the formed calcium carbide has a capacity of 278-290 dm3/kg and belongs to the third and second grades. The developed technology makes it possible to increase the degree of phosphorites’ comprehensive use two times (up to 87.5%).
EN
Modern production of non-ferrous metals is imperfect due to the loss of rock mass and metal in the technological chain ore mining to metal production. Processing of zinc oxide and oxidized copper ores by hydrometallurgical, pyrometallurgical and flotation methods is associated with formation of dump cakes, clinkers and flotation tailings. Therefore, all these methods are characterized by a low coefficient of complex use of raw materials (for example, for the Waelz process this coefficient is not higher than 35%). To increase the degree of complex processing of oxide raw materials, it is necessary to change the attitude to raw materials and create industrial technologies based on new principles. The article presents theoretical and applied research results on complex processing of oxidized copper and zinc oxide ores based on the new attitude to raw materials and new effective technologies allowing us to increase significantly the level of raw materials’ complex processing. Theoretical regularities, features and optimal technological parameters of new methods of complex processing of oxide, zinc and oxidized copper ores were found based on the ideology of a universal technological raw material and the simultaneous production of several products in one furnace unit.
EN
This article is devoted to basalt reprocessing together with magnetite concentrate in order to obtain ferrous alloy and calcium carbide. The studies have been based on thermodynamic simulation and electric smelting in arc furnace. The thermodynamic simulation has been performed using HSC-5.1 software based on the principle of minimum Gibbs energy. The blend was smelted in arc furnaces. On the basis of the obtained results of combined processing of basalt, it has been established that under equilibrium conditions, the increase in carbon content from 36 to 42 wt % of basalt and concentrate mixture makes it possible to increase the aluminum extraction into the alloy up to 81.4%, calcium into calcium carbide – up to 51.4%, and silicon into the alloy – up to 78.5% [...]
EN
Oxide ores are potential world raw materials sources of zinc manufacture. Despite a sufficiently high extraction level of zinc and lead known pyrometallurgical methods are characterized by formation of large quantity of industrial wastes therefore a complex use level of these raw materials is low. Hydrometallurgical methods are mainly applied for extraction of nonferrous metals. The present article contains the research results of complex processing an oxide ore of the Shaymerden deposit (Kazakhstan), consisting in the simultaneous production of a ferroalloy, calcium carbide and zinc sublimates from the ore in a thermal-ore arc electric furnace. The researches have been carried out with use of a HSC 5.1 software package (based on a principle of Gibbs energy minimum) and electrical smelting the ore in a monoelectrode arc electric controlled-output furnace. It was found, that in equilibrium conditions in a system ore-carbon-iron gaseous zinc is formed at Т > 1073 K, FeSi at Т > 1573 K, CaC2 at Т > 2073 K, Si at Т > 1673 K. The electrosmelting of ore in an arc furnace using of 38.7-40% coke and 16-28.4% steel cuttings the conversion degree of silicon into an alloy is 75-77%, calcium to calcium carbide 77-81%, zinc to sublimates 99.3%. The ferroalloy obtained contains 19.6-41.3% of silicon, the calcium carbide is characterized by capacity of 110-250 m3/kg, and the zinc sublimates contain 66-67% of zinc. The -suggested method allows to increase the combined usage of the ore from 35.6 to 89.6%.
EN
The growing interest in the exploitation of marine deposits has resulted in the development of research on deposits and technologies for their exploitation. For several years, the authors have been dealing with one of the most important problems in the deep sea mining of mineral deposits, namely transport from great depths. This publication presents theoretical considerations regarding the use of calcium carbide as a source of energy for transport from the seabed. The authors proposed three lines of the course of the decomposition reaction of calcium carbide and then analyzed the possibility of their use. From the obtained results it can be concluded that the maximum depth of use of a simple CaC2 distribution is about 1 km, while using the method proposed by the authors based on the "balance of forces" (using an additional medium) it is possible to apply this method to any depth occurring on Earth.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.