Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cP systems
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The Hamiltonian Cycle and Travelling Salesman Problems in cP Systems
EN
The Hamiltonian Cycle Problem (HCP) and Travelling Salesman Problem (TSP) are long-standing and well-known NP-hard problems. The HCP is concerned with finding paths through a given graph such that those paths visit each node exactly once after the start, and end where they began (i.e., Hamiltonian cycles). The TSP builds on the HCP and is concerned with computing the lowest cost Hamiltonian cycle on a weighted (di)graph. Many solutions to these problems exist, including some from the perspective of P systems. For the TSP however, almost all these papers have combined membrane computing with other approaches for approximate solution algorithms, which is surprising given the plethora of P systems solutions to the HCP. A recent paper presented a brute-force style P systems solution to the TSP with a time complexity of O(n2), exploiting the ability of P systems to reduce time complexity in exchange for space complexity, but the resultant system had a fairly high number of rules, around 50. Inspired by this paper, and seeking a more concise representation of an exact brute-force TSP algorithm, we have devised a P systems algorithm based on cP systems (P systems with Complex Objects) which requires five rules and takes n + 3 steps. We first provide some background on cP systems and demonstrate a fast new cP systems method to find the minimum of a multiset, then describe our solution to the HCP, and build on that for our TSP algorithm. This paper describes said algorithms, and provides an example application of our TSP algorithm to a given graph and a digraph variant.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.