Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  burr height
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: This research aims to analyse the influence of blanking clearance size on the burr development for mild steel sheet, brass and aluminium. The main reason for this research is estimating the burr size on blank parts. It is still significant since the quality of the products is determined by evaluating the amount of allowable burr in the parts. Design/methodology/approach: For the blanking process on the 3.00 mm thick sheets, various sizes of blanking clearance for a 20 mm diameter of the die opening are employed, as is the technique for obtaining the parts. Then the height of the burr on each product was measured using a micrometre and toolmaker microscope. The height of burr for each size of blanking clearance have been recorded and compared using a graph. Comparison made to identify which measure of blanking clearance and which type of material will produce a small size of burr. Findings: For mild steel, brass, and aluminium, blanking clearance 0.15 mm produced burr heights of 0.088 mm, 0.015 mm, and 0.024 mm, and blanking clearance 0.13 mm produced bur heights of 0.192 mm, 0.055 mm, and 0.046 mm, respectively. The brass had a lower burr height than mild steel and aluminium, according to the results. More significant blanking clearance (0.15 mm) produced a smaller size of burr compared to a smaller blanking clearance (0.13 mm). Practical implications: This study focuses on burr height rather than the wear of the punch and die cutting edge; burr height can affect punch and die sharpness. It also can guide practitioners in estimating blanking clearance and the burr height of mild steel, brass and aluminium. Originality/value: This paper demonstrates that the gap between the punch and die influences the burr height. The material strength also affects the burr height, with a high tensile strength resulting in a larger burr.
EN
High-quality products include those with better surface quality and texture, close dimensional tolerances and form accuracies at precise level, increase fatigue life and burr-free. Burr formation is one of the most common inevitable facts occurring in all material removal processes, reduces assembly and machined part quality. But, burr formation during milling is a more complex mechanism compare to remaining machining burrs and leads to numerous difficulties during the deburring process. To prevent this, one should optimize the combination of cutting parameters during machining itself. In order to build up a link between quality and productivity and to attain the same in the cost-effective way, the present work concentrate on multi objective optimization of CNC end milling process parameters. Multiple performance characteristics with respect to surface quality and performance index like assembly work have been put up, to assess an equivalent single quality index (called grey relational grade) has been optimized finally by Grey based Taguchi method. After that priority weight of individual quality and performance attributes has been estimated by entropy measurement technique on the basis of relative significance and check the feasibility of the proposed technique has been demonstrated in this context.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.